Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) is characterized by significant clinical and molecular heterogeneity, influenced by genetic and demographic factors. Using an unbiased, network-driven approach, we analyzed the cerebrospinal fluid (CSF) proteome from 431 individuals (483 samples), including 111 African American participants, to identify core protein modules associated with AD, race, sex, and age. Our analysis revealed ten co-expression modules linked to distinct biological pathways and cell types, many of which correlated with established AD biomarkers such as β-amyloid, tau, and phosphorylated tau. To further resolve disease heterogeneity, we applied a proteomic subtyping approach, identifying six distinct CSF subtypes spanning the clinical and pathological spectrum. These subtypes were validated across independent cohorts, with many aligning with previously defined AD subtypes, including those linked to neuronal hyperplasticity, immune activation, and blood-brain barrier (BBB) integrity. Notably, the BBB subtype, enriched with African Americans and men, was characterized by low CSF tau, high CSF/serum albumin ratios, and reduced synaptic protein levels. This subtype also exhibited increased levels of proteolytic enzymes, including thrombin and matrix metalloproteases, that cleave tau. Plasma dilution into the neuronal hyperplastic AD subtype CSF led to reduced tau and synaptic protein module levels, indicating that plasma protease activity contributes to tau and synaptic protein depletion independent of underlying brain pathology. These findings highlight the impact of BBB integrity on CSF tau levels, particularly in men and African Americans, and underscore the need for diversity-informed AD biomarker strategies to improve diagnostics and therapeutic targeting across populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952530PMC
http://dx.doi.org/10.1101/2025.03.14.643332DOI Listing

Publication Analysis

Top Keywords

tau synaptic
12
synaptic protein
12
proteomic subtyping
8
alzheimer's disease
8
blood-brain barrier
8
tau
8
bbb integrity
8
african americans
8
csf tau
8
csf
6

Similar Publications

Therapeutic potential of small peptides in Alzheimer's disease: Advances in memory restoration and targeted delivery systems.

Neuropeptides

September 2025

Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Despite extensive research into Alzheimer's disease (AD), few therapeutic strategies have successfully addressed its core pathology at the synaptic level. Small peptides represent a promising class of therapeutic agents capable of modulating key molecular pathways involved in amyloid toxicity, tau hyperphosphorylation, and synaptic degeneration. Their unique ability to cross biological barriers, interact with intracellular targets, and be modified for enhanced stability positions them as viable candidates for next-generation treatments targeting cognitive decline in AD.

View Article and Find Full Text PDF

Amongst the major histopathological hallmarks in Alzheimer's disease are intracellular neurofibrillary tangles consisting of hyperphosphorylated and aggregated Tau, synaptic dysfunction, and synapse loss. We have previously shown evidence of synaptic mitochondrial dysfunction in a mouse model of Tauopathy that overexpresses human Tau (hTau). Here, we questioned whether the levels or activity of Parkin, an E3 ubiquitin ligase involved in mitophagy, can influence Tau-induced synaptic mitochondrial dysfunction.

View Article and Find Full Text PDF

BioID2-Based Tau Interactome Reveals Novel and Known Protein Interactions Associated with Multiple Cellular Pathways.

J Proteome Res

September 2025

Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, United States.

Pathological inclusions composed of tau are hallmarks of neurodegenerative diseases termed tauopathies, the most common of which is Alzheimer's disease. Accumulating evidence suggests that tau is involved in a multitude of physiological functions that are regulated, in part, by direct and/or transient protein interactions. Deciphering the tau interactome is critical for understanding the physiological and pathological roles of tau.

View Article and Find Full Text PDF

Histone modifications: Key players in Alzheimer's disease.

Mech Ageing Dev

September 2025

Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sc

Alzheimer's disease (AD) is one of the most prevalent diseases in the older population. AD causes progressive cognitive and behavioral impairment, but current treatments are unable to slow or prevent the progression of this disease. Thus, identification of novel biomarkers and therapeutic targets is urgently needed.

View Article and Find Full Text PDF

ApoE4 Upregulates GSK-3β to Aggravate Alzheimer-Like Pathologies and Cognitive Impairment in Type 2 Diabetic Mice.

CNS Neurosci Ther

September 2025

Key Laboratory of Ministry of Education for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Background: The apolipoprotein E (ApoE) ε4 allele and type 2 diabetes mellitus (T2DM) are independent risk factors for Alzheimer's disease (AD), the most prevalent neurodegenerative disorder in the elderly. The T2DM patients carrying the ApoE ε4 allele exhibit heightened activation of platelet glycogen synthase kinase-3β (GSK-3β), a key downstream kinase in the insulin signaling pathway, along with more severe cognitive deficits. This observation suggests an intrinsic link between ApoE ε4, GSK-3β, and cognitive dysfunction.

View Article and Find Full Text PDF