98%
921
2 minutes
20
Background & Aims: Immunotherapy has shown promising results in cancer treatment; however, it remains largely ineffective for pancreatic ductal adenocarcinoma (PDAC). N6-methyladenosine (m6A), known for its crucial role in cancer biology, is not yet fully understood regarding immune evasion. This study aims to elucidate the associations and mechanisms linking m6A modification with immune evasion in PDAC and propose strategies for clinical intervention.
Methods: A multimodal PDAC cohort of 122 patients was developed, integrating transcriptomic profiling, imaging mass cytometry, and m6A quantification to identify m6A regulators associated with immunosuppressive tumor microenvironment (TME) and clinical outcomes. Findings were validated across 6 independent PDAC cohorts. Assays including MeRIP, RIP, and RNA pull-down confirmed that IGF2BP2 binds to targets, whereas single-cell RNA-sequencing, flow cytometry, and multiplex immunohistochemistry profiled the TME. Preclinical interventions were tested in PDAC organoids, patient-derived tissue fragments, and humanized mouse models.
Results: Our comprehensive analysis identified the m6A reader protein IGF2BP2 as a critical factor associated with poor prognosis in PDAC, linked to reduced effector cell infiltration and a fibrotic TME. High matrix stiffness in PDAC stabilized IGF2BP2, which subsequently promoted sphingomyelin synthesis via SGMS2 up-regulation. This pathway facilitates PD-L1 localization on membrane lipid rafts, enhancing immune evasion. The elastographic properties of PDAC enabled noninvasive screening of patients with overexpressed IGF2BP2/SGMS2. Disrupting sphingomyelin synthesis improved antitumor immunity and suppressed PDAC growth in humanized mice, highlighting immunotherapeutic opportunities for PDAC.
Conclusions: These findings emphasize the critical interplay between extrinsic matrix stiffness and intrinsic IGF2BP2-regulated sphingomyelin synthesis, identifying a promising target for immunotherapeutic strategies in PDAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.gastro.2025.03.019 | DOI Listing |
Cancer Metastasis Rev
September 2025
Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA.
Chronic inflammation and microbial dysbiosis have been implicated in the development of head and neck squamous cell carcinoma (HNSCC), particularly oral cavity squamous cell carcinoma (OSCC). Periodontitis is a common chronic inflammatory disease characterized by the progressive destruction of tooth-supporting structures. While periodontitis Has been associated with an increased risk of OSCC in epidemiological and mechanistic studies, the strength of this association is unclear.
View Article and Find Full Text PDFAnn Surg Oncol
September 2025
Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Background: Hepatocellular carcinoma (HCC) frequently invades the portal vein, leading to early recurrence and a poor prognosis. However, the mechanisms underlying this invasion remain unclear. In this study, we aimed to detect portal vein circulating tumor cells (CTCs) using a Glypican-3-positive detection method and evaluate their prognostic significance.
View Article and Find Full Text PDFJ Med Virol
September 2025
Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are oncogenic human gammaherpesviruses (GHVs) associated with a broad spectrum of malignancies and chronic diseases. However, direct studies of these viruses in humans are limited by ethical constraints, technical challenges, and their strict species specificity. To overcome these barriers, researchers have developed surrogate models, with murine gammaherpesvirus 68 (MHV68) emerging as a tractable and widely utilized system.
View Article and Find Full Text PDFJ Virol
September 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Feline infectious peritonitis virus (FIPV) can cause an immune-mediated disease that is fatal to felines, but there is a lack of clinically effective protection conferred by vaccines. The methyltransferase (MTase) activity of the coronavirus nonstructural proteins nsp14 and nsp16 affects virulence, but there are no studies on the effect of nsp14 and nsp16 mutations affecting enzyme activity on the virulence of FIPV. In this study, we successfully rescued two mutant strains based on the previous infectious clone QS-79, named FIPV QS-79 dnsp14 and dnsp16, by mutating the MTase active sites of nsp14 (N415) and nsp16 (D129).
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.
View Article and Find Full Text PDF