98%
921
2 minutes
20
The clustering of multiple transcription factor binding sites (TFBSs) for the same TF has proved to be a pervasive feature of cis-regulatory elements in the eukaryotic genome. However, the contribution of binding sites within the homotypic clusters of TFBSs (HCTs) to TF binding and target gene expression remains to be understood. Here, we characterize the CHD4 enhancers that harbor unique functional ZNF410 HCTs genome wide. We uncover that ZNF410 controls chromatin accessibility and activity of the CHD4 enhancer regions. We demonstrate that ZNF410 binds to the HCTs in a collaborative fashion, further conferring transcriptional activation. In particular, three ZNF410 motifs (sub-HCTs) located at 3' end of the distal enhancer act as "switch motifs" to control chromatin accessibility and enhancer activity. Mechanistically, the SWI/SNF complex is selectively required to mediate cooperative ZNF410 binding for CHD4 expression. Together, our findings expose a complex functional hierarchy of homotypic clustered motifs, which cooperate to fine-tune target gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2025.115476 | DOI Listing |
New Phytol
September 2025
National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
Heterosis holds great potential for improving yield, quality, and environmental adaptability in crop breeding, which suggests that hybrids can exhibit better performance in adapting to extreme environments. However, the epigenetic mechanisms of salt-tolerant heterosis in allopolyploid crop Brassica napus (AACC, 2n = 38), particularly chromatin accessibility, remain largely unexplored. We investigated the dynamics of chromatin accessibility and transcriptional reprogramming during a time course of salt exposure in Brassica napus hybridization.
View Article and Find Full Text PDFCell Rep
September 2025
Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology Polish Academy of Sciences, Pasteur St. 3, Warsaw 02-093, Poland; Laboratory of Tumour Hypoxia and Epigenomics, Nencki Institute of Experimental Biology Polish Academy of Sciences, Pasteur St. 3, Warsaw 02-093, Poland. El
Hypoxia is a key histopathological feature of glioblastoma, associated with tumor aggressiveness and therapy resistance. Glioma-associated microglia and macrophages (GAMs) are key players in the tumor microenvironment of glioblastoma and acquire immunosuppressive properties during tumor progression. We show that hypoxia alters key GAM identity genes, as it upregulates the expression of monocytic marker lectin galactoside-binding doluble 3 (Lgals3) and downregulates the homeostatic microglial markers purinergic receptor P2Y G-protein coupled 12 (P2ry12) and transmembrane protein 119 (Tmem119) in GAMs co-cultured with glioma cells and in glioblastoma patients' samples.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
September 2025
Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
Purpose: The mammalian cochlea has two types of low abundance and highly specialized inner (IHC) and outer (OHC) mechanosensory hair cells. Their malfunction or death is a common cause of congenital and acquired deafness. IHCs and OHCs exhibit different transcriptomes during development.
View Article and Find Full Text PDFTo uncover molecular determinants of motor neuron degeneration and selective vulnerability in amyotrophic lateral sclerosis (ALS), we generated longitudinal single-nucleus transcriptomes and chromatin accessibility profiles of spinal motor neurons from the SOD1-G93A ALS mouse model. Vulnerable alpha motor neurons showed thousands of molecular changes, marking a transition into a novel cell state we named 'disease-associated motor neurons' (DAMNs). We identified transcription factor regulatory networks that govern how healthy cells transition into DAMNs as well as those linked to vulnerable and resistant motor neuron subtypes.
View Article and Find Full Text PDFThe spatial organization and dynamics of a genome are central to gene regulation. While a comprehensive understanding of chromatin organization in the human nucleus has been achieved using fixed-cell methods, measuring the dynamics of specific genomic regions over extended periods in individual living cells remains challenging. Here, we present a robust and fully genetically encoded system for fluorescent labeling and long-term tracking of any accessible non-repetitive genomic locus in live human cells using fluorogenic and replenishable nanobody array fusions of the dCas9, and compact polycistronic single guide (sg)RNAs.
View Article and Find Full Text PDF