Alloying Strategy Balances the Adsorption-Reduction-Oxidation Process of Sulfur Species Across Wide Temperature Ranges.

Small

National Base for International Science & Technology Cooperation of New Energy Equipment, Energy Storage Materials and Devices, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, S

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transition metal-based catalysts have been demonstrated to effectively anchor and utilize lithium polysulfides (LiPSs), thereby enhancing the capacity of lithium-sulfur batteries (LSBs). However, the immobilized d-band electronic structure of a single transition metal is inadequate for achieving satisfactory adsorption and catalytic conversion. In this study, an alloying strategy is employed to modulate the d-band structure with the aim of achieving the optimal adsorption capacity for LiPSs. For this purpose, cobalt (Co)-nickel (Ni) encapsulated in nitrogen-doped carbon nanotubes as bimetallic catalysts (CoNi/NCNT) are synthesized. The theory calculations and experimental analysis demonstrate that by hybridizing the d-orbitals of Co and Ni, the d-band structure of the CoNi bimetallic is modulated to be at the optimal central position. This configuration leads to the moderate adsorption and detachment of LiPSs on the surface of the catalysts, thereby balancing the "adsorption-reduction-oxidation" process of sulfur (S) species. Therefore, the LSBs with CoNi/NCNT separator are able to achieve good cycling at room temperature (capacity decay rate of 0.086% after 500 cycles at 0.5 C). The modified batteries can achieve excellent cycling performance across a wide temperature range (capacity decay rate of 0.057% after 100 cycles at 0 °C, and 0.34% after 100 cycles at 60 °C).

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202502300DOI Listing

Publication Analysis

Top Keywords

alloying strategy
8
process sulfur
8
sulfur species
8
wide temperature
8
d-band structure
8
capacity decay
8
decay rate
8
100 cycles
8
strategy balances
4
balances adsorption-reduction-oxidation
4

Similar Publications

Ampere-level electrocatalytic nitrate reduction to ammonia (eNRA) offers a carbon-neutral alternative to the Haber-Bosch process. However, its energy efficiency is critically hampered by the inherent conflict between the reaction and diffusion. Herein, we propose a reaction-diffusion-coupled strategy implemented on a well-tailored CuCoNiRuPt high-entropy alloy aerogel (HEAA) to simultaneously realize energy barrier homogenization and accelerate mass transport, endowing ampere-level eNRA with a high energy efficiency.

View Article and Find Full Text PDF

This article presents a multiproxy investigation of metal samples obtained from 48 Nuragic figurines (so-called bronzetti) and three copper bun ingots. These objects originate from three prominent Sardinian sanctuaries and one unidentified site, dating to the late Nuragic period of the early first millennium BCE. The dataset significantly expands the existing scientific database and unwraps the complex fabrication biographies of the figurines from ore to finished object.

View Article and Find Full Text PDF

Solvothermal synthesis of PtPb nanoparticles with efficient alcohol oxidation performance.

Nanoscale

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Precious metal nanomaterials have demonstrated significant advantages in the field of alcohol electro-catalytic oxidation. In this study, the inexpensive main group metals lead (Pb) and platinum (Pt) have been innovatively selected to construct an alloy catalyst. By employing the solvent-thermal method, PtPb nanoparticles with a well-defined crystalline structure were successfully synthesized, exhibiting excellent performance.

View Article and Find Full Text PDF

Unlocking Hydrogen Spillover: Dynamic Behavior and Advanced Applications.

Acc Chem Res

September 2025

Division of Materials and Manufacturing Science, Graduate School of Engineering, The University of Osaka, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

ConspectusHydrogen spillover, the simultaneous diffusion of protons and electrons, has recently emerged as a key phenomenon in the functionalization of hydrogen in cutting-edge research fields. Its occurrence has been found to significantly impact hydrogen-related fields of science, such as catalysis, reduction, and hydrogen storage. Since the discovery of hydrogen spillover more than half a century ago, although many scientists have reported its unique properties and have attempted to utilize them, no practical advanced applications have been established yet.

View Article and Find Full Text PDF

The most significant challenge facing magnesium alloy stents is their ability to withstand complex deformation during their application. To gain a deeper understanding of the impact of stent deformation on the protective capabilities of the coating, this paper presents an amplified stent deformation model. The models were coated with either a low elongation material-Poly(D, L-lactide) (PDLLA) or a high elongation material-Poly(butylene adipate-co-terephthalate) (PBAT), followed by the application of a rapamycin-loaded PLGA as drug-eluting layer.

View Article and Find Full Text PDF