Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Previous studies on echocardiogram segmentation are focused on the left ventricle in parasternal long-axis views. Deep-learning models were evaluated on the segmentation of the ventricles in parasternal short-axis echocardiograms (PSAX-echo). Segmentation of the ventricles in complementary echocardiogram views will allow the computation of important metrics with the potential to aid in diagnosing cardio-pulmonary diseases and other cardiomyopathies. Evaluating state-of-the-art models with small datasets can reveal if they improve performance on limited data.

Approach: PSAX-echo was performed on 33 volunteer women. An experienced cardiologist identified end-diastole and end-systole frames from 387 scans, and expert observers manually traced the contours of the cardiac structures. Traced frames were pre-processed and used to create labels to train two domain-specific (Unet-Resnet101 and Unet-ResNet50), and four general-domain [three segment anything (SAM) variants, and the Detectron2] deep-learning models. The performance of the models was evaluated using the Dice similarity coefficient (DSC), Hausdorff distance (HD), and difference in cross-sectional area (DCSA).

Results: The Unet-Resnet101 model provided superior performance in the segmentation of the ventricles with 0.83, 4.93 pixels, and on average for DSC, HD, and DCSA, respectively. A fine-tuned MedSAM model provided a performance of 0.82, 6.66 pixels, and , whereas the Detectron2 model provided 0.78, 2.12 pixels, and for the same metrics, respectively.

Conclusions: Deep-learning models are suitable for the segmentation of the left and right ventricles in PSAX-echo. We demonstrated that domain-specific trained models such as Unet-ResNet provide higher accuracy for echo segmentation than general-domain segmentation models when working with small and locally acquired datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943840PMC
http://dx.doi.org/10.1117/1.JMI.12.2.024002DOI Listing

Publication Analysis

Top Keywords

deep-learning models
12
segmentation ventricles
12
model provided
12
models
8
segmentation
8
segmentation left
8
left ventricles
8
ventricles parasternal
8
parasternal short-axis
8
short-axis echocardiograms
8

Similar Publications

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF

Designing Buchwald-Hartwig Reaction Graph for Yield Prediction.

J Org Chem

September 2025

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.

The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.

View Article and Find Full Text PDF

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF