Similar Publications

Phosphorus(V)-centered porphyrins (P(V)-porphyrins) are an important class of functional dyes in many fields of research, and axial ligands on the phosphorus atom affect the electronic properties of P(V)-porphyrins and add functions. Herein, we report on the synthesis and characterization of a hitherto unknown P(V)-porphyrin having hydrogen atoms as axial ligands (1·PF , PF is a counter anion). Synthesis of 1·PF was achieved by treatment of dichloro-derivative (2·Cl) with LiAlH followed by AgPF via hydride reduction accompanied by one-electron reduction and one-electron oxidation.

View Article and Find Full Text PDF

Axial ligand engineering is a promising strategy to enhance the performance of single-atom catalysts (SACs) in electrocatalysis. However, a single non-metallic axial coordination atom linked to monolayer SACs (MSACs) often exhibits insufficient stability. In this work, we designed a series of bilayer SACs (BSACs) with vertically stacked FeN and MN (M = Sc-Zn) layers bridged by axial non-metallic atoms (C, N, O, P, S, and Se).

View Article and Find Full Text PDF

The nominally trigonal, pseudo-Jahn-Teller (PJT)-active, = 1/2 N-bound complexes, , M = Fe, Co, with three in-plane phosphine ligands and axial donors, E = Si, B, C, include functional nitrogenase models that catalyze the reduction of N to NH. We applied EPR, P ENDOR spectroscopy, and DFT computations to characterize the PJT-induced distortions of four selected , revealing how the metal ion and axial ligand E together tune both PJT dynamics, as revealed by P ENDOR and N activation, as indicated by a decrease in N≡N stretching frequency, ν(N≡N). , and each exhibit a single P isotropic hyperfine coupling, revealing dynamic pseudorotation of the PJT distortion, producing averaged symmetry with equivalent phosphine ligands.

View Article and Find Full Text PDF

The α7-nicotinic acetylcholine receptor (α7-nAChR) is a cation-selective member of the superfamily of Cys-loop receptors. Ubiquitously expressed throughout the body of vertebrate animals, this pentameric ligand-gated ion channel participates in a wide range of physiological phenomena - as diverse as synaptic transmission and the control of excessive inflammation - and is an attractive therapeutic target for novel ligands. Although notable efforts have been made to understand this receptor-channel in terms of function and structure, many questions remain unanswered despite the molecular simplicity of its homomeric assembly.

View Article and Find Full Text PDF

A primary challenge in the carbon dioxide reduction reaction (CORR) is the rational design and engineering of high-efficiency electrocatalysts. A series of MMN catalysts (MM = NiNi, CoNi, CoFe, CoCo) with precisely tailored axial ligands (R = -OH, -COH, -CN) have been high-throughput screened out to exhibit optimal electrocatalytic activity, which is extended to further estimate their CORR performance in this work. The adsorption energies of three distinct ligands at the M-M bridge site are evaluated to quantitatively assess the ligand stabilization.

View Article and Find Full Text PDF