A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Transport of Volatiles in Agglutinates from Lunar Regolith of Chang'e-5 Mission. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Agglutinate particles, an important component resulting from micrometeoroids impacts, account for about 13.4% to 84.7% of the volume of lunar regolith depending on its maturity. They are crucial in the soil's evolution and the migration of volatile substances. Here, we examined a representative agglutinate particle from Chang'e-5 samples and modeled how volatiles move through its porous framework. Our analysis revealed that the agglutinate's surface features a patchy distribution of smooth, open pores, as shown by both surface and 3-dimensional structural assessments. By integrating elemental distribution data, we propose that the formation of these smooth, open pores is primarily due to the flow of gaseous volatiles, byproducts of intricate physiochemical reactions occurring in the lunar surface layer during impacts by micrometeoroids. Numerical models of volatile transport in the porous agglutinate have been developed for different flow regimes. These models demonstrate that under the intense conditions of impacts, the transport of volatiles occurs at a remarkably high velocity. Consequently, it is improbable that water would accumulate within the porous structure of lunar soil agglutinates. Nevertheless, understanding this process is valuable for gaining a deeper understanding of the lunar regolith's development and for potential future endeavors in extracting water from the lunar surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948346PMC
http://dx.doi.org/10.34133/research.0638DOI Listing

Publication Analysis

Top Keywords

transport volatiles
8
lunar regolith
8
smooth open
8
open pores
8
lunar surface
8
lunar
6
volatiles agglutinates
4
agglutinates lunar
4
regolith chang'e-5
4
chang'e-5 mission
4

Similar Publications