Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The current lyophilization technology for biopharmaceuticals and vaccine products is capital and energy-intensive, largely due to the use of indirect, conductive heat transfer. The heat removal and input in freezing, primary drying, and secondary drying are via contact between the product and shelves cooled or heated by a circulating working fluid such as silicone oil. This is slow, inefficient, and leads to non-uniform freezing and drying, especially in large-scale production systems. To address the current throughput limitations of conventional lyophilization, this collaborative project by Purdue University, Merck and IMA Life develops the next generation of tunable randomized-field microwave lyophilization system demonstrating significant acceleration over conventional freeze-drying processes. The system uses a microwave source delivering electromagnetic energy to the lyophilization chamber at frequencies between 8 GHz and 18 GHz at power levels below 400 W and mechanical stirrers for field randomization to achieve uniform heating. The frequency range is selected due to its greater efficiency for heating ice relative to traditional industrial microwave frequencies of 915 MHz and 2.45 GHz. During operation, temperature is measured directly using optical sensors, providing robust real-time product data. Closed-loop control algorithms enable direct control of the product temperature throughout the drying process, ensuring the material is dried at an optimal rate. The results of quasi-Random Field (qRF) microwave drying for several benchmark formulations, including an attenuated live virus vaccine, are presented and compared with the corresponding conventional lyophilization processes. A model for the product temperature and primary drying time is developed and validated against experimental cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950371PMC
http://dx.doi.org/10.1038/s41598-025-91642-4DOI Listing

Publication Analysis

Top Keywords

closed-loop control
8
primary drying
8
conventional lyophilization
8
product temperature
8
lyophilization
6
drying
6
randomized-field microwave-assisted
4
microwave-assisted pharmaceutical
4
pharmaceutical lyophilization
4
lyophilization closed-loop
4

Similar Publications

Management of diabetes mellitus in hemodialysis is highly complex due to increased glycemic variability and hypoglycemic risk. The use of technologies applied to diabetes has been shown to improve glycemic control, however data in dialysis patients are limited. To describe the efficacy and safety of the minimed 780G AHCL system in a stable hemodialysis patient and during hospitalization in the Intensive Care Unit (ICU).

View Article and Find Full Text PDF

Regioselective Ring-Opening Polymerization of Asymmetric Cyclic Dimers for Polyester-Based Alternating Copolymers.

Chemistry

September 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.

Sequence-controlled polyester-based alternating copolymers have attracted significant interest due to their biocompatibility, biodegradability, closed-loop recyclability, and hydrolytic degradability, offering broad potential in biomedical and sustainable materials. Among the available strategies, regioselective ring-opening polymerization (ROP) of asymmetric cyclic di(thio)esters and cyclic(ester-amide)s has emerged as a promising approach for constructing alternating copolymers with precise sequence- and stereo-control, structural diversity, and tunable properties. This review classifies asymmetric cyclic monomers into two categories: (1) monomers with two aliphatic ester bonds, where regioselectivity is mainly dictated by steric differences and typically requires tailored metal catalysts; and (2) monomers with chemically distinct reactive sites (e.

View Article and Find Full Text PDF

This study investigates how sustained governance of hidden hazards influences safety performance in port systems, using data from 54 production and key non-production enterprises within the Tianjin Port Group. Employing correlation analysis, regression modeling and mediation-moderation analysis, the study finds that both systematic hazard governance and standardized safety management significantly improve safety outcomes. Basic management-level governance directly reduces the frequency of incidents, while site-level governance enhances safety performance indirectly by promoting standardization.

View Article and Find Full Text PDF

In this article, a novel online adaptive control scheme is developed for the optimal control issues of integrated electric-gas systems with partially unknown dynamics, by combining the decentralized event-triggered mechanism and adaptive dynamic programming techniques. Initially, the complex electric-gas coupling network is modeled in the state-space form. By virtue of neural networks (NNs), the NN-based identifier and the critic NN are designed to approximate the unknown drift dynamic and the optimal value function in an online fashion, respectively.

View Article and Find Full Text PDF

To date, the closed-loop system represents the best commercialized management of type 1 diabetes. However, mealtimes still require carbohydrate estimation and are often associated with postprandial hyperglycemia which may contribute to poor metabolic control and long -term complications. A multicentre, prospective, non-interventional clinical trial was designed to determine the effectiveness of a novel algorithm to predict changes in blood glucose levels two hours after a usual meal.

View Article and Find Full Text PDF