Humus Soil Inhibits Antibiotic Resistance Gene Rebound in Swine Manure Composting by Modulating Microecological Niches.

Microorganisms

Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aerobic composting is widely used for the degradation of organic matter, simultaneously reducing the presence of antibiotic resistance genes (ARGs) in swine manure. However, the phenomenon of abundance rebound or even enrichment of ARGs is still a problem. The effect and mechanism of humus soil (Hs) on ARG reduction by adding it into the piles (0% for the control group (CK); 10% for S1 group; 20% for S2 group; and 30% for S3 group) after the thermophilic phase of composting was investigated. The results indicated that Hs promoted organic matter degradation and nitrogen loss. During days 15-36, the greatest reduction of 69.91% in total ARG abundance was observed in S2, while the abundance rebounded by 222.75% in CK and decreased only 13.71% in S3. With the 20% Hs addition, 85.42% abundance reduction for mobile genetic elements (MGEs) and 100% removal rates for A5, A9, 1, 2, and X were achieved. Moreover, the addition of Hs immediately changed the bacterial community structure of the substrate and varied the bacterial community successional direction in the treatments. Additionally, significantly positive correlations (|r| > 0.6; < 0.05) were found between the top 20 genera and ARGs. The potential host bacteria for ARGs changed from , , , and in CK to , , and in S2, highlighting the shift and reduction in host bacteria driven by Hs, which, in turn, influenced the abundance variations in ARGs. This study verified the feasibility of inhibiting the rebound of ARG abundance effectively by influencing the microecological niche in the pile, offering an approach for promoting a reduction in ARGs in animal wastes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944299PMC
http://dx.doi.org/10.3390/microorganisms13030571DOI Listing

Publication Analysis

Top Keywords

humus soil
8
antibiotic resistance
8
swine manure
8
organic matter
8
arg abundance
8
bacterial community
8
host bacteria
8
args
6
abundance
6
reduction
5

Similar Publications

Soils harbor some of the most diverse microbiomes on Earth. Interactions within these microbial communities are often mediated by natural products, many functioning as chemical signals. Specialized metabolites known as arginoketides, or arginine-derived polyketides, have been linked to mediate these interactions.

View Article and Find Full Text PDF

Exploring the Bacterial Microbiota of Seeds.

Microb Biotechnol

September 2025

Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.

The seed microbiota, a still underexplored component of plant-microbe interactions, plays a pivotal role in plant development and holds significant promise for advancing sustainable agriculture. By influencing essential processes such as germination, stress tolerance, nutrient acquisition and defence, seed-associated microbes offer unique advantages beyond those of soil- or rhizosphere-associated microbiomes. Notably, they are transmitted both vertically and horizontally; however, fundamental questions remain regarding their origin, ecological dynamics and functional roles across environments.

View Article and Find Full Text PDF

Caliciopsis pinea is the ascomycete plant pathogen that causes caliciopsis canker disease on North American Pinus strobus (eastern white pine). Infections result in downgrading of lumber due to canker formation and overall loss of vigor in P. strobus, which is a critical cover species throughout its native range.

View Article and Find Full Text PDF

Boron toxicity and salinity are major abiotic stress factors that cause significant yield losses, particularly in arid and semi-arid regions. Hyperaccumulator plants, such as Puccinella distans (Jacq.) Parl.

View Article and Find Full Text PDF

Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.

Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.

View Article and Find Full Text PDF