Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

CuBiS (CBS) has emerged as a promising earth-abundant absorber for thin-film photovoltaics, offering a sustainable alternative to conventional technologies. However, ab initio studies on its optoelectronic properties remain scarce and often yield contradictory results. This study systematically examines the influence of two density functional theory (DFT) methodologies, linear combination of atomic orbitals (LCAO) and projector augmented wave (PAW), on the structural and electronic properties of CBS, aiming to establish a reliable computational framework for future research. With this in mind, we also assessed the impact of a wide range of exchange-correlation (XC) functionals within both methods, including 6 from the local density approximation (LDA) family (HL, PW, PZ, RPA, Wigner, XA), 10 from the generalized gradient approximation (GGA) family (BLYP, BP86, BPW91, GAM, KT2, PBE, PBEsol, PW91, RPBE, XLYP), 2 meta-GGA functionals (SCAN, R2SCAN), and the hybrid HSE06 functional. Both LCAO and PAW consistently predict an indirect bandgap for CBS across all XC functionals, aligning with most previous DFT studies but contradicting experimental reports of a direct transition. The LDA and meta-GGA functionals systematically underestimated the CBS bandgap (<1 eV), with further reductions upon structural relaxation. GGA functionals performed better, with BLYP and XLYP yielding the most experimentally consistent results. The hybrid HSE06 functional substantially overestimated the bandgap (1.9 eV), with minimal changes after relaxation. The calculated hole and electron effective masses reveal strong anisotropy along the X, Y, and Z crystallographic directions. Additionally, CBS exhibits an intrinsic p-type nature, as the Fermi level consistently lies closer to the valence band maximum across all methods and functionals. However, the PAW method generally predicted more accurate lattice parameters than LCAO; the best agreement with experimental values was achieved using the PW91 (1.2% deviation) and HSE06 (0.9% deviation) functionals within LCAO. Based on these findings, we recommend the PW91 functional with LCAO for structural optimizations in large supercell studies of CBS dopants and/or defects and BLYP/XLYP for electronic properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943643PMC
http://dx.doi.org/10.3390/ma18061213DOI Listing

Publication Analysis

Top Keywords

thin-film photovoltaics
8
lcao paw
8
meta-gga functionals
8
functionals
5
assessing cubis
4
cubis thin-film
4
photovoltaics systematic
4
systematic dft
4
dft study
4
study comparing
4

Similar Publications

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF

Perovskite materials have revolutionized optoelectronics by virtue of their tunable bandgaps, exceptional optoelectronic properties, and structural flexibility. Notably, the state-of-the-art performance of perovskite solar cells has reached 27%, making perovskite materials a promising candidate for next-generation photovoltaic technology. Although numerous reviews regarding perovskite materials have been published, the existing reviews generally focus on individual material systems (e.

View Article and Find Full Text PDF

The photovoltaic performance of CuZnSn(S,Se) is limited by open-circuit voltage losses (ΔV) in the radiative (ΔV) and non-radiative (ΔV) limits, due to sub-bandgap absorption and deep defects, respectively. Recently, several devices with power conversion efficiencies approaching 15% have been reported, prompting renewed interest in the possibility that the key performance-limiting factors have been addressed. In this work, we analyze the sources of ΔV in these devices and offer directions for future research.

View Article and Find Full Text PDF

Aluminum-doped copper indium gallium selenide/sulfide (CIGAS) is a favorable absorber material for solar cell applications; however, the number of reports on CIGAS solar cells currently remains limited. In this study, we therefore employed SCAPS-1D software for the theoretical modeling of CIGAS thin film solar cells and investigated the effect of material properties and device configurations on solar cell photovoltaic (PV) parameters. Initially, key parameters such as thickness and charge carrier concentrations of each layer used in CIGAS PV devices were studied and optimized to obtain suitable conditions for high device performance.

View Article and Find Full Text PDF

The polarization switching pathway in HfZrO-based ferroelectric thin film is still not well clarified and agreed, limiting the fundamental physical understanding and performance engineering. The key question lies in clarifying the transient intermediate state during the polarization switching of orthorhombic phase. In this work, by designing the ferroelectric and dielectric stacks, we theoretically and experimentally demonstrate a polarization switching pathway through an orthorhombic-tetragonal-orthorhombic phase transition in ferroelectric HfZrO where the non-polar tetragonal phase is metastable.

View Article and Find Full Text PDF