The native cell microenvironment activates signaling pathways through mechanotransduction mechanisms, influencing cells' physiological and functional outcomes. Magnetic fields are explored to manipulate these environments, and magnetic nanoparticles (MNPs) are highlighted as nano-instructive agents capable of activating key signaling pathways, presenting exciting possibilities in tissue engineering. Still, the ability to precisely control the assembly and differentiation of stem cells within a dynamically responsive microenvironment, crucial for effective tissue regeneration, remains unexplored.
View Article and Find Full Text PDFCuBiS (CBS) has emerged as a promising earth-abundant absorber for thin-film photovoltaics, offering a sustainable alternative to conventional technologies. However, ab initio studies on its optoelectronic properties remain scarce and often yield contradictory results. This study systematically examines the influence of two density functional theory (DFT) methodologies, linear combination of atomic orbitals (LCAO) and projector augmented wave (PAW), on the structural and electronic properties of CBS, aiming to establish a reliable computational framework for future research.
View Article and Find Full Text PDFMagnetic nanoparticles (MNPs) are advanced materials that combine the unique properties of magnetic materials and nanoscale dimensions, enabling a wide range of applications in biomedicine, environmental science, and information technology. This review provides a comprehensive yet accessible introduction to the fundamental principles, characterization techniques, and diverse applications of MNPs, with a focus on their nanoscale magnetic properties, such as superparamagnetism, single-domain behavior, and surface effects. It also delves into their classification and the critical role of parameters like magnetic anisotropy and blocking temperature.
View Article and Find Full Text PDFThis work reports on the design, development, and characterization of novel magneto-plasmonic elastic liposomes (MPELs) of DPPC:SP80 (85:15) containing MgCaFeO nanoparticles coupled with gold nanorods, for topical application of photothermal therapy (PTT). Both magnetic and plasmonic components were characterized regarding their structural, morphological, magnetic and photothermal properties. The magnetic nanoparticles display a cubic shape and a size (major axis) of 37 ± 3 nm, while the longitudinal and transverse sizes of the nanorods are 46 ± 7 nm and 12 ± 1.
View Article and Find Full Text PDFIn this study, multicore-like iron oxide (FeO) and manganese ferrite (MnFeO) nanoparticles were synthesized and combined with nanogels based on chitosan and alginate to obtain a multimodal drug delivery system. The nanoparticles exhibited crystalline structures and displayed sizes of 20 ± 3 nm (FeO) and 11 ± 2 nm (MnFeO). The FeO nanoparticles showed a higher saturation magnetization and heating efficiency compared with the MnFeO nanoparticles.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2023
Nanotechnology has provided a new insight into cancer treatment by enabling the development of nanocarriers for the encapsulation, transport, and controlled release of antitumor drugs at the target site. Among these nanocarriers, magnetic nanosystems have gained prominence. This work presents the design, development, and characterization of magnetoliposomes (MLs), wherein superparamagnetic nanoparticles are coupled to the lipid surface.
View Article and Find Full Text PDFMaterials (Basel)
May 2023
Ferrites have been widely studied for their use in the biomedical area, mostly due to their magnetic properties, which gives them the potential to be used in diagnostics, drug delivery, and in treatment with magnetic hyperthermia, for example. In this work, KFeO particles were synthesized with a proteic sol-gel method using powdered coconut water as a precursor; this method is based on the principles of green chemistry. To improve its properties, the base powder obtained was subjected to multiple heat treatments at temperatures between 350 and 1300 °C.
View Article and Find Full Text PDFPolymers (Basel)
February 2023
Rigid polyurethane foams (RPUFs) were synthesized using exclusively lignin-based polyol (LBP) obtained via the oxyalkylation of kraft lignin with propylene carbonate (PC). Using the design of experiments methodology combined with statistical analysis, the formulations were optimized to obtain a bio-based RPUF with low thermal conductivity and low apparent density to be used as a lightweight insulating material. The thermo-mechanical properties of the ensuing foams were compared with those of a commercial RPUF and a RPUF (RPUF-conv) produced using a conventional polyol.
View Article and Find Full Text PDFSuperparamagnetic nanoparticles are of high interest for therapeutic applications. In this work, nanoparticles of calcium-doped manganese ferrites (CaMnFeO) functionalized with citrate were synthesized through thermally assisted oxidative precipitation in aqueous media. The method provided well dispersed aqueous suspensions of nanoparticles through a one-pot synthesis, in which the temperature and Ca/Mn ratio were found to influence the particles microstructure and morphology.
View Article and Find Full Text PDFInvited for the cover of this issue is the group of Tito Trindade and colleagues at the University of Aveiro. The image depicts dendritic magneto-plasmonic substrates for surface-enhanced Raman scattering (SERS) detection. Read the full text of the article at 10.
View Article and Find Full Text PDFChemical analyses in the field using surface-enhanced Raman scattering (SERS) protocols are expected to be part of several analytical procedures applied to water quality monitoring. To date, these endeavors have been supported by developments in SERS substrate nanofabrication, instrumentation portability, and the internet of things. Here, we report distinct chemical strategies for preparing magneto-plasmonic (Fe O : Au) colloids, which are relevant in the context of trace-level detection of water contaminants due to their inherent multifunctionality.
View Article and Find Full Text PDFMultifunctional lipid nanocarriers are a promising therapeutic approach for controlled drug release in cancer therapy. Combining the widely used liposome structure with magnetic nanoparticles in magnetoliposomes allies, the advantages of using liposomes include the possibility to magnetically guide, selectively accumulate, and magnetically control the release of drugs on target. The effectiveness of these nanosystems is intrinsically related to the individual characteristics of the two main components-lipid formulation and magnetic nanoparticles-and their physicochemical combination.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2021
The search for magnetoelectric materials typically revolves around the struggle to make magnetic and ferroelectric orders simultaneously coexist in the same material, using either an intrinsic or an extrinsic/composite approach. Via ab initio calculations of a prototypical Fe/BaTiO3 interface, we predict that it is possible to tune the magnitude of the individual magnetic moments even for non-polar BaTiO3. By comparing polar and non-polar Fe/BaTiO3 heterostructures, we show that the Fe, Ti and equatorial O atomic magnetic moments are induced and enhanced as a result of their local crystal field.
View Article and Find Full Text PDFInt J Nanomedicine
December 2020
Purpose: Nanotechnology applied to cancer treatment is a growing area of research in nanomedicine with magnetic nanoparticle-mediated anti-cancer drug delivery systems offering least possible side effects. To that end, both structural and chemical properties of commercial cobalt metal nanoparticles were studied using label-free confocal Raman spectroscopy.
Materials And Methods: Crystal structure and morphology of cobalt nanoparticles were studied by XRD and TEM.
Phys Chem Chem Phys
August 2020
The search for better and inexpensive magnetoelectric materials is now commonplace in solid state physics. Intense coupling between technologically viable electric and magnetic properties, embedded in a single material, is still an attribute greatly pursued by the scientific community. Following this line of thought, using DFT, the study of a specific interface between the TiO layer of BaTiO and a monolayer of Fe atoms is presented, probing different uni-axial strain effects of the considered supercell.
View Article and Find Full Text PDFDespite the promising pharmacological properties of curcumin, the transport and effective release of curcumin is still a challenge. The advances in functionalized nanocarriers for curcumin have also been motivated by the anticancer activity of this natural compound, aiming at targeted therapies. Here, stealth (aqueous and solid) magnetoliposomes containing calcium-substituted magnesium ferrite nanoparticles, CaMgFeO (with = 0.
View Article and Find Full Text PDFDoxorubicin is one of the most widely used anti-cancer drugs, but side effects and selectivity problems create a demand for alternative drug delivery systems. Herein we describe a hybrid magnetic nanomaterial as a pH-dependent doxorubicin release carrier. This nanocarrier comprises magnetic iron oxide cores with a diameter of 10 nm, enveloped in a hybrid material made of siliceous shells and ĸ-carrageenan.
View Article and Find Full Text PDFMagnetic nanoparticles of zinc/calcium ferrite and decorated with silver were prepared by coprecipitation method. The obtained nanoparticles were characterized by UV/Visible absorption, XRD, TEM and SQUID. The mixed zinc/calcium ferrites exhibit an optical band gap of 1.
View Article and Find Full Text PDFMagnetoliposomes containing calcium ferrite (CaFeO) nanoparticles were developed and characterized for the first time. CaFeO nanoparticles were covered by a lipid bilayer or entrapped in liposomes forming, respectively, solid or aqueous magnetoliposomes as nanocarriers for new antitumor drugs. The magnetic nanoparticles were characterized by UV/Visible absorption, XRD, HR-TEM, and SQUID, exhibiting sizes of 5.
View Article and Find Full Text PDFInt J Biol Macromol
October 2019
Water contamination with antibiotics is a serious environmental threat. Ciprofloxacin (CIP) is one of the most frequently detected antibiotics in water. Herein, silica-based magnetic nanosorbents prepared using three seaweed polysaccharides, alginic acid, κ- and λ-carrageenan, were developed and evaluated in the uptake of ciprofloxacin.
View Article and Find Full Text PDFTechnology critical elements (TCE) are considered the vitamins of nowadays technology. Factors such as high demand, limited sources and geopolitical pressures, mining exploitation and its negative impact, point these elements as new emerging contaminants and highlight the importance for removal and recycling TCE from contaminated waters. This paper reports the synthesis, characterization and application of hybrid nanostructures to remove and recover lanthanides from water, promoting the recycling of these high value elements.
View Article and Find Full Text PDF