This work reports on the design, development, and characterization of novel magneto-plasmonic elastic liposomes (MPELs) of DPPC:SP80 (85:15) containing MgCaFeO nanoparticles coupled with gold nanorods, for topical application of photothermal therapy (PTT). Both magnetic and plasmonic components were characterized regarding their structural, morphological, magnetic and photothermal properties. The magnetic nanoparticles display a cubic shape and a size (major axis) of 37 ± 3 nm, while the longitudinal and transverse sizes of the nanorods are 46 ± 7 nm and 12 ± 1.
View Article and Find Full Text PDFIn this study, multicore-like iron oxide (FeO) and manganese ferrite (MnFeO) nanoparticles were synthesized and combined with nanogels based on chitosan and alginate to obtain a multimodal drug delivery system. The nanoparticles exhibited crystalline structures and displayed sizes of 20 ± 3 nm (FeO) and 11 ± 2 nm (MnFeO). The FeO nanoparticles showed a higher saturation magnetization and heating efficiency compared with the MnFeO nanoparticles.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2023
Nanotechnology has provided a new insight into cancer treatment by enabling the development of nanocarriers for the encapsulation, transport, and controlled release of antitumor drugs at the target site. Among these nanocarriers, magnetic nanosystems have gained prominence. This work presents the design, development, and characterization of magnetoliposomes (MLs), wherein superparamagnetic nanoparticles are coupled to the lipid surface.
View Article and Find Full Text PDFPolymers (Basel)
February 2023
Rigid polyurethane foams (RPUFs) were synthesized using exclusively lignin-based polyol (LBP) obtained via the oxyalkylation of kraft lignin with propylene carbonate (PC). Using the design of experiments methodology combined with statistical analysis, the formulations were optimized to obtain a bio-based RPUF with low thermal conductivity and low apparent density to be used as a lightweight insulating material. The thermo-mechanical properties of the ensuing foams were compared with those of a commercial RPUF and a RPUF (RPUF-conv) produced using a conventional polyol.
View Article and Find Full Text PDFSuperparamagnetic nanoparticles are of high interest for therapeutic applications. In this work, nanoparticles of calcium-doped manganese ferrites (CaMnFeO) functionalized with citrate were synthesized through thermally assisted oxidative precipitation in aqueous media. The method provided well dispersed aqueous suspensions of nanoparticles through a one-pot synthesis, in which the temperature and Ca/Mn ratio were found to influence the particles microstructure and morphology.
View Article and Find Full Text PDFMultifunctional lipid nanocarriers are a promising therapeutic approach for controlled drug release in cancer therapy. Combining the widely used liposome structure with magnetic nanoparticles in magnetoliposomes allies, the advantages of using liposomes include the possibility to magnetically guide, selectively accumulate, and magnetically control the release of drugs on target. The effectiveness of these nanosystems is intrinsically related to the individual characteristics of the two main components-lipid formulation and magnetic nanoparticles-and their physicochemical combination.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2021
The search for magnetoelectric materials typically revolves around the struggle to make magnetic and ferroelectric orders simultaneously coexist in the same material, using either an intrinsic or an extrinsic/composite approach. Via ab initio calculations of a prototypical Fe/BaTiO3 interface, we predict that it is possible to tune the magnitude of the individual magnetic moments even for non-polar BaTiO3. By comparing polar and non-polar Fe/BaTiO3 heterostructures, we show that the Fe, Ti and equatorial O atomic magnetic moments are induced and enhanced as a result of their local crystal field.
View Article and Find Full Text PDFAccurate nuclear quadrupole moment values are essential as benchmarks for nuclear structure models and for the interpretation of experimentally determined nuclear quadrupole interactions in terms of electronic and molecular structure. Here, we present a novel route to such data by combining perturbed γ-γ angular correlation measurements on free small linear molecules, realized for the first time within this work, with state-of-the-art ab initio electronic structure calculations of the electric field gradient at the probe site. This approach, also feasible for a series of other cases, is applied to Hg and Cd halides, resulting in Q(^{199}Hg,5/2^{-})=+0.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2020
The search for better and inexpensive magnetoelectric materials is now commonplace in solid state physics. Intense coupling between technologically viable electric and magnetic properties, embedded in a single material, is still an attribute greatly pursued by the scientific community. Following this line of thought, using DFT, the study of a specific interface between the TiO layer of BaTiO and a monolayer of Fe atoms is presented, probing different uni-axial strain effects of the considered supercell.
View Article and Find Full Text PDFDespite the promising pharmacological properties of curcumin, the transport and effective release of curcumin is still a challenge. The advances in functionalized nanocarriers for curcumin have also been motivated by the anticancer activity of this natural compound, aiming at targeted therapies. Here, stealth (aqueous and solid) magnetoliposomes containing calcium-substituted magnesium ferrite nanoparticles, CaMgFeO (with = 0.
View Article and Find Full Text PDFMagnetic nanoparticles of zinc/calcium ferrite and decorated with silver were prepared by coprecipitation method. The obtained nanoparticles were characterized by UV/Visible absorption, XRD, TEM and SQUID. The mixed zinc/calcium ferrites exhibit an optical band gap of 1.
View Article and Find Full Text PDFMagnetoliposomes containing calcium ferrite (CaFeO) nanoparticles were developed and characterized for the first time. CaFeO nanoparticles were covered by a lipid bilayer or entrapped in liposomes forming, respectively, solid or aqueous magnetoliposomes as nanocarriers for new antitumor drugs. The magnetic nanoparticles were characterized by UV/Visible absorption, XRD, HR-TEM, and SQUID, exhibiting sizes of 5.
View Article and Find Full Text PDFTechnology critical elements (TCE) are considered the vitamins of nowadays technology. Factors such as high demand, limited sources and geopolitical pressures, mining exploitation and its negative impact, point these elements as new emerging contaminants and highlight the importance for removal and recycling TCE from contaminated waters. This paper reports the synthesis, characterization and application of hybrid nanostructures to remove and recover lanthanides from water, promoting the recycling of these high value elements.
View Article and Find Full Text PDFMaterials (Basel)
September 2017
We report an effect of giant surface modification of a 5.6 nm thick BaTiO₃ film grown on Si (100) substrate under poling by conductive tip of a scanning probe microscope (SPM). The surface can be locally elevated by about 9 nm under -20 V applied during scanning, resulting in the maximum strain of 160%.
View Article and Find Full Text PDFConducting fibres are essential to the development of e-textiles. We demonstrate a method to make common insulating textile fibres conductive, by coating them with graphene. The resulting fibres display sheet resistance values as low as 600 Ωsq, demonstrating that the high conductivity of graphene is not lost when transferred to textile fibres.
View Article and Find Full Text PDFDetermining and acting on thermo-physical properties at the nanoscale is essential for understanding/managing heat distribution in micro/nanostructured materials and miniaturized devices. Adequate thermal nano-characterization techniques are required to address thermal issues compromising device performance. Scanning thermal microscopy (SThM) is a probing and acting technique based on atomic force microscopy using a nano-probe designed to act as a thermometer and resistive heater, achieving high spatial resolution.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2017
Higher quality magnetic nanoparticles are needed for use as magnetic nanoprobe in medical imaging techniques and cancer therapy. Moreover, the phytochemistry benefits of some Amazonian essential oils have sparked great interest for medical treatments. In this work, a magnetic nanoprobe was developed, allying the biocompatibility and superparamagnetism of iron oxide nanoparticles (SPIONs) with benefits associated with Amazonian oils from Copaiba and Andiroba trees.
View Article and Find Full Text PDFThere is an increasing demand for accurate, non-invasive and self-reference temperature measurements as technology progresses into the nanoscale. This is particularly so in micro- and nanofluidics where the comprehension of heat transfer and thermal conductivity mechanisms can play a crucial role in areas as diverse as energy transfer and cell physiology. Here we present two luminescent ratiometric nanothermometers based on a magnetic core coated with an organosilica shell co-doped with Eu(3+) and Tb(3+) chelates.
View Article and Find Full Text PDFHere we report the chemical synthesis of cobalt aluminum oxide (CoAl2O4) nanoparticles by a non-aqueous sol-gel route. The one-pot procedure is carried out at mild temperatures (in the 150 to 300 °C range), and consists of the reaction between cobalt acetate and aluminium isopropoxide in benzyl alcohol. The resulting CoAl2O4 nanoparticles show an unusually low average size, between 2.
View Article and Find Full Text PDFThe continuous decrease on the geometric size of electronic devices and integrated circuits generates higher local power densities and localized heating problems that cannot be characterized by conventional thermographic techniques. Here, a self-referencing intensity-based molecular thermometer involving a di-ureasil organic-inorganic hybrid thin film co-doped with Eu(3+) and Tb(3+) tris (β-diketonate) chelates is used to obtain the temperature map of a FR4 printed wiring board with spatio-temporal resolutions of 0.42 μm/4.
View Article and Find Full Text PDFThe iron(III) μ-oxo bridged dimeric polyoxometalate [(PW(11)O(39)Fe)(2)O](10-) was isolated by reacting the transition metal monosubstituted Keggin anion [PW(11)O(39)Fe(H(2)O)](4-) and the ionic liquid 1-butyl-3-methylimidazolium bromide, (Bmim)Br, at pH 5.5. The crystal structure of (Bmim)(10)[(PW(11)O(39)Fe)(2)O]·0.
View Article and Find Full Text PDFNon-invasive precise thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. This has been strongly stimulated by the numerous challenging requests arising from nanotechnology and biomedicine. This critical review offers a general overview of recent examples of luminescent and non-luminescent thermometers working at nanometric scale.
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2010
The magnetic removal of Hg(2+) from water has been assessed using silica coated magnetite particles. The magnetite particles were first prepared by hydrolysis of FeSO(4) and their surfaces were modified with amorphous silica shells that were then functionalized with organic moieties containing terminal dithiocarbamate groups. Under the experimental conditions used, the materials reported here displayed high efficiency for Hg(2+) uptake (74%) even at contaminant levels as low as 50 μg l(-1).
View Article and Find Full Text PDF