Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

COVID-19 is a disease in which early prognosis of severity is critical for desired patient outcomes and for the management of limited resources like intensive care unit beds and ventilation equipment. Many prognostic statistical tools have been developed for the prediction of disease severity, but it is still unclear which ones should be used in practice. We aim to guide clinicians in choosing the best available tools to make optimal decisions and assess their role in resource management and assess what can be learned from the COVID-19 scenario for development of prediction models in similar medical applications. Using the five major medical databases: MEDLINE (via PubMed), Embase, Cochrane Library (CENTRAL), Cochrane COVID-19 Study Register, and Scopus, we conducted a comprehensive systematic review of prediction tools between 2020 January and 2023 April for hospitalized COVID-19 patients. We identified both the relevant confounding factors of tool performance using the MetaForest algorithm and the best tools-comparing linear, machine learning, and deep learning methods-with mixed-effects meta-regression models. The risk of bias was evaluated using the PROBAST tool. Our systematic search identified eligible 27,312 studies, out of which 290 were eligible for data extraction, reporting on 430 independent evaluations of severity prediction tools with ~ 2.8 million patients. Neural Network-based tools have the highest performance with a pooled AUC of 0.893 (0.748-1.000), 0.752 (0.614-0.853) sensitivity, 0.914 (0.849-0.952) specificity, using clinical, laboratory, and imaging data. The relevant confounders of performance are the geographic region of patients, the rate of severe cases, and the use of C-Reactive Protein as input data. 88% of studies have a high risk of bias, mostly because of deficiencies in the data analysis. All investigated tools in use aid decision-making for COVID-19 severity prediction, but Machine Learning tools, specifically Neural Networks clearly outperform other methods, especially in cases when the basic characteristics of severe and non-severe patient groups are similar, and without the need for more data. When highly specific biomarkers are not available-such as in the case of COVID-19-practitioners should abandon general clinical severity scores and turn to disease specific Machine Learning tools.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937321PMC
http://dx.doi.org/10.1038/s41598-025-95282-6DOI Listing

Publication Analysis

Top Keywords

machine learning
12
neural networks
8
covid-19 disease
8
disease severity
8
tools
8
prediction tools
8
risk bias
8
severity prediction
8
learning tools
8
covid-19
6

Similar Publications

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF