Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Machine learning (ML) has been extensively utilized to predict complications associated with various diseases. This study aimed to develop ML-based classifiers employing a stacking ensemble strategy to forecast the intensity of postoperative axial pain (PAP) in patients diagnosed with degenerative cervical myelopathy (DCM). A total of 711 consecutive postoperative DCM patients were included between 2016 and 2024, and after excluding patients who did not meet the inclusion criteria and those who met the exclusion criteria, a total of 484 patients were ultimately included in this study. The intensity of PAP was assessed using a standardized Numerical Rating Scale (NRS) score one year following surgery. Participants were randomly allocated into training and testing sub-datasets in a ratio of 8:2. 91 initial ML classifiers were developed, from which the top three highest-performing classifiers were subsequently integrated into an ensemble model utilizing 13 different machine learning models. The area under the curve (AUC) served as the primary metric for evaluating the predictive performance of all classifiers. The classifiers EmbeddingLR-RF (AUC = 0.81), EmbeddingRF-MLP (AUC = 0.81), and RFE-SVM (AUC = 0.80) were recognized as the leading three models. By implementing an ensemble learning approach such as stacking, an enhancement in performance for the ML classifier was observed after amalgamating these three models, with SVM ensemble classifier performed the best (AUC = 0.91). Decision curve analysis underscored the advantages conferred by these ensemble classifiers; notably, prediction curves for PAP intensity among DCM patients exhibited significant variability across the top three initial classifiers. The ensemble classifiers effectively predicted PAP intensity in DCM patients, showcasing substantial potential to aid clinicians in managing DCM cases while optimizing medical resource utilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929781PMC
http://dx.doi.org/10.1038/s41598-025-94755-yDOI Listing

Publication Analysis

Top Keywords

machine learning
12
dcm patients
12
stacking ensemble
8
postoperative axial
8
axial pain
8
degenerative cervical
8
cervical myelopathy
8
classifiers
8
initial classifiers
8
top three
8

Similar Publications

Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.

Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.

View Article and Find Full Text PDF

Background: Cerebrovascular reactivity reflects changes in cerebral blood flow in response to an acute stimulus and is reflective of the brain's ability to match blood flow to demand. Functional MRI with a breath-hold task can be used to elicit this vasoactive response, but data validity hinges on subject compliance. Determining breath-hold compliance often requires external monitoring equipment.

View Article and Find Full Text PDF

Objectives: Non-small cell lung cancer (NSCLC) is associated with poor prognosis, with 30% of patients diagnosed at an advanced stage. Mutations in the and genes are important prognostic factors for NSCLC, and targeted therapies can significantly improve survival in these patients. Although tissue biopsy remains the gold standard for detecting gene mutations, it has limitations, including invasiveness, sampling errors due to tumor heterogeneity, and poor reproducibility.

View Article and Find Full Text PDF

Artificial Intelligence in Contact Dermatitis: Current and Future Perspectives.

Dermatitis

September 2025

From the Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences (AIIMS), Bhopal, India.

Contact dermatitis (CD), which includes both allergic CD and irritant CD, is a common inflammatory condition that can pose significant diagnostic challenges. Although patch testing is the gold standard for identifying causative allergens for allergic contact dermatitis (ACD), it is time-consuming, subjective, and requires expert interpretation. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning, have shown promise in improving the accuracy, efficiency, and accessibility of CD diagnosis and management.

View Article and Find Full Text PDF