Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cluster analysis, as a core technique in unsupervised learning, has widespread applications. With the increasing complexity of data, deep clustering, which integrates the advantages of deep learning and traditional clustering algorithms, demonstrates outstanding performance in processing high-dimensional and complex data. However, when applied to graph data, deep clustering faces two major challenges: noise and sparsity. Noise introduces misleading connections, while sparsity makes it difficult to accurately capture relationships between nodes. These two issues not only increase the difficulty of feature extraction but also significantly affect clustering performance. To address these problems, we propose a novel Self-Supervised Graph Clustering model based on Reliable Semi-Supervision (SSGC-RSS). This model innovates through upstream and downstream components. The upstream component employs a dual-decoder graph autoencoder with joint clustering optimization, preserving latent information of features and graph structure, and alleviates the sparsity problem by generating cluster centers and pseudo-labels. The downstream component utilizes a semi-supervised graph attention encoding network based on highly reliable samples and their pseudo-labels to select reliable samples for training, thereby effectively reducing the interference of noise. Experimental results on multiple graph datasets demonstrate that, compared to existing methods, SSGC-RSS achieves significant performance improvements, with accuracy improvements of 0.9%, 2.0%, and 5.6% on Cora, Citeseer, and Pubmed datasets respectively, proving its effectiveness and superiority in complex graph data clustering tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2025.107418DOI Listing

Publication Analysis

Top Keywords

novel self-supervised
8
graph
8
self-supervised graph
8
clustering
8
graph clustering
8
reliable semi-supervision
8
data deep
8
deep clustering
8
graph data
8
reliable samples
8

Similar Publications

Molecular property prediction has become essential in accelerating advancements in drug discovery and materials science. Graph Neural Networks have recently demonstrated remarkable success in molecular representation learning; however, their broader adoption is impeded by two significant challenges: (1) data scarcity and constrained model generalization due to the expensive and time-consuming task of acquiring labeled data and (2) inadequate initial node and edge features that fail to incorporate comprehensive chemical domain knowledge, notably orbital information. To address these limitations, we introduce a Knowledge-Guided Graph (KGG) framework employing self-supervised learning to pretrain models using orbital-level features in order to mitigate reliance on extensive labeled data sets.

View Article and Find Full Text PDF

Accelerated Patient-specific Non-Cartesian MRI Reconstruction using Implicit Neural Representations.

Int J Radiat Oncol Biol Phys

September 2025

Radiation Oncology, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143. Electronic address:

Purpose: Accelerating MR acquisition is essential for image guided therapeutic applications. Compressed sensing (CS) has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is computationally complex and difficult to generalize. Convolutional neural networks (CNNs)/Transformers-based deep learning (DL) methods emerged as a faster alternative but face challenges in modeling continuous k-space, a problem amplified with non-Cartesian sampling commonly used in accelerated acquisition.

View Article and Find Full Text PDF

Conventional techniques for underwater source localization have traditionally relied on optimization methods, matched-field processing, beamforming, and, more recently, deep learning. However, these methods often fall short to fully exploit the data correlation crucial for accurate source localization. This correlation can be effectively captured using graphs, which consider the spatial relationship among data points through edges.

View Article and Find Full Text PDF

Objective: Epileptic seizure classification using EEG signals remains a significant challenge due to complex spatial-temporal dependencies, limited labeled data, and severe class imbalance.

Methods: We propose a self-supervised learning framework, ASGPF (Adaptive Spatio-Graph Pretraining Framework), for EEG-based seizure classification. At its core is a novel Spatio-Graph Learning Cell (SGLC), which integrates a Graph Learning module to dynamically construct EEG topology, a Gated Graph Neural Network to extract spatial features across EEG channels, and a Gated Recurrent Unit to capture longterm temporal dependencies.

View Article and Find Full Text PDF

Objective: Immunotherapy has emerged as a promising treatment for advanced non-small cell lung cancer (NSCLC), but accurately predicting which patients will benefit from it remains a major clinical challenge. To address this, we aim to develop a novel multimodal method, DeepAFM, that integrates histopathology, genomic features, and clinical information to predict patient responses to anti-PD-(L)1 immunotherapy.

Materials And Methods: A total of 93 patients with advanced NSCLC were included in this study.

View Article and Find Full Text PDF