98%
921
2 minutes
20
"Colloidal molecules" represent artificial colloidal clusters replicating the geometries of molecules and exhibiting flexibility and fluctuations similar to macromolecules and proteins. Their dynamic and anisotropic characters make them unique and indispensable building blocks for creating hierarchically organized superstructures. Despite the progress in synthesizing and assembling colloidal molecules, unveiling their dynamic characters is challenging in experiments. Here, we employ real-time three-dimensional imaging and simulations to reveal dynamic colloidal molecule structures in micrometre-sized colloidal-emulsion models with tunable electrostatic interactions. Our findings reveal that colloidal molecules' dynamic structures are inherently asymmetric, with angular symmetry emerging through continuous ordering from a liquid-like configuration. We further develop an effective method to guide the ordering of colloidal molecules towards a desired structure by dynamically adjusting the ionic strength in the solvent during the ordering process. We validate this method using molecular dynamics simulations and propose a practical protocol for its experimental implementation. Our research contributes to a clearer physical understanding of dynamic colloidal molecules and offers potential solutions to the complexities inherent in their formation process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928658 | PMC |
http://dx.doi.org/10.1038/s41467-025-58057-1 | DOI Listing |
J Colloid Interface Sci
September 2025
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China; Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, Henan Normal University, Xinxiang, Henan 453007, China. Electronic address:
Carbon monoxide (CO) has demonstrated significant potential in tumor therapy. However, the uncontrolled release of CO and single-modality therapy often fail to achieve the desired therapeutic outcomes. To address the above deficiencies, mesoporous silica nanoparticles containing tetrasulfide bonds (TMSNs) were constructed as intelligent nanocarriers to co-deliver a mitochondria-targeting photosensitizer (Au-TPP) and a photodynamically activated CO-releasing molecule (FeCO), enabling the synergistic combination of photodynamic therapy (PDT) and CO therapy.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China. Electronic address:
The sequential preparation of perovskite solar cells (PSCs) has received widespread concern for its use in large-scale perovskite modules and perovskite/silicon tandem solar cells. However, the instability of the PbI precursor solution and the incomplete reaction of ammonium salts hinder the industrialization of PSCs. Here, by introducing phthalamide (PA) into PbI solution, the carbonyl oxygen of PA molecules undergoes a bidentate coordination reaction with Pb to form an octahedral coordination structure, and the nitrogen atom in the -NH group exhibits weakly acidic properties due to the conjugation effect.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:
We present a supramolecular templating strategy for inducing chirality in hybrid perovskites via confined crystallization within chiral super spaces-nanoconfined, helically ordered cavities formed by the self-assembly of achiral bent-core molecules with chiral additives. Upon removal of the additives, the resulting porous films retain permanent chirality. Quasi-2D hybrid organic-inorganic perovskites crystallized within these templates exhibit distinct chiroptical activity, including mirror-image circular dichroism and circularly polarized light emitting (CPLE), with CPLE dissymmetry factors reaching up to 1.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
Kafkas University, Faculty of Arts and Sciences, Department of Chemistry, Kars, Turkiye.
The synthesis of two Schiff base (SB) compounds, 3-phenyl-4-(5-nitrofuran-1-yl)methyleneamino-4,5-dihydro-1H-1,2,4-triazol-5-one (3‒PNM) and 1-acetyl-3-phenyl-4-(5-nitrofuran-1-yl)methyleneamino-4,5-dihydro-1H-1,2,4-triazol-5-one (1-APNM) was successful. The structures of 3-PNM and 1-APNM were determined using ¹H/¹C-NMR and IR spectroscopy. Absorption and fluorescence spectroscopy were used to evaluate the compounds' interactions with BSA.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:
Downsizing Pt particles and incorporating water dissociation site represents a promising strategy for maximizing atomic utilization efficiency and enhancing catalytic performance in Pt-based hydrogen evolution reaction (HER) electrocatalysts. Here, we present a self-supported Pt/Y(OH) electrocatalyst through a synergistic combination of anion insertion-enhanced electrodeposition and chemical deposition at ambient temperature. The resultant architecture features sub-2 nm Pt nanoclusters (with an average diameter of 1.
View Article and Find Full Text PDF