98%
921
2 minutes
20
The maintenance of lung function relies crucially on the homeostatic replacement and post-injury regeneration of the lung alveolar epithelium (Hogan et al., Cell Stem Cell 15(2):123-138, 2014). Dysfunctions in these processes contribute to the pathogenesis of numerous lung diseases (Hogan et al., Cell Stem Cell 15(2):123-138, 2014; Matthay et al., J Clin Invest 122(8):2731-2740, 2012). While identifying stem and progenitor cells in the lung epithelium has significantly enriched our understanding of endogenous replacement and regenerative mechanisms (Hogan et al., Cell Stem Cell 15(2):123-138, 2014), it is clear that epithelial cells interact closely with mesenchymal components which create a micro-environmental niche that is vital for regulating both homeostatic replacement and post-injury regeneration of epithelial cells. Specific subsets of alveolar type II cells (AT2) behave as epithelial stem cells of the distal lung. We have identified a CD44 subpopulation of AT2 cells that are preferentially located near macro-blood vessels and manifest stem cell characteristics (Chen et al., Stem Cell Rep 19(6):890-905, 2024; Am J Physiol Lung Cell Mol Physiol 313(1):L41-l51, 2017). In addition, the macro-blood vessels endothelial cells (ECs) function as niche components to support the CD44 AT2s. Here, we describe the method to identify the CD44 AT2 cells by immuno-fluorescence and co-culture of CD44 AT2 cells with lung endothelial cells-their potential niche component-in 3D organoid culture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279409 | PMC |
http://dx.doi.org/10.1007/7651_2025_607 | DOI Listing |
Nano Lett
September 2025
State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
An optimal administration approach is critical for effective mRNA delivery and treatment. Nebulizer inhalation offers a mild, convenient, and noninvasive strategy with high translational potential but primarily focused on lung delivery. In this study, we found that surface charges influence tissue targeting of mRNA lipid nanoparticle (mRNA-LNP) postnebulization.
View Article and Find Full Text PDFDevelopment
September 2025
MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
In an era of expanding reproductive possibilities, the human embryo has come to represent both immense potential and profound constraint. Advances in medically assisted reproduction (MAR) have led to the cryopreservation of hundreds of thousands of embryos each year, yet many remain unused and are ultimately discarded. Meanwhile, studies aimed at understanding infertility, early human development and preventing miscarriage continue to face significant barriers, with only a small fraction of embryos ever donated to research.
View Article and Find Full Text PDFJ Cosmet Dermatol
September 2025
Department of Dermatology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China.
Purpose: To evaluate the efficacy and underlying mechanism of advanced optimal pulse technology intense pulsed light (AOPT) in low-energy triple-pulse long-width mode (AOPT-LTL) for melasma treatment.
Methods: An in vivo guinea pig model of melasma was established through progesterone injection and ultraviolet B radiation. Three sessions of AOPT-LTL treatment were performed weekly.
Gut Liver
September 2025
Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
Background/aims: Despite medical advances in recent decades, the mortality rate of advanced liver cirrhosis remains high. Although liver transplantation remains the most effective treatment, candidate selection is limited by donor availability and alcohol abstinence requirements. Bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation has shown promise for the treatment of advanced cirrhosis.
View Article and Find Full Text PDFBMB Rep
September 2025
Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517; Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419; Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351; Department of Health
The adult human neural stem cell (ahNSC)-conditioned medium (CM) contains various secreted factors that promote tissue repair and neuroprotection. This study aimed to identify the key secreted proteins in ahNSC-CM and investigate the role of tissue inhibitor of metalloproteinases-1 (TIMP-1) in wound healing, angiogenesis, and neuroprotection against oxygenglucose deprivation. Cytokine array and liquid chromatography- tandem mass spectrometry analysis of ahNSC-CM revealed that monocyte chemoattractant protein-1 (MCP-1) and TIMP-1 were highly abundant.
View Article and Find Full Text PDF