98%
921
2 minutes
20
Perovskite oxides exhibit excellent performance in water oxidation, but still lacks a precise regulation strategy for the active sites, while the reaction mechanism is poorly understood. Herein, an ion-induced effect (IIE) is proposed of Ce, Ni dual site doped LaCoO(CeNi-LaCoO), where Ni induces the binding of Co species into bimetallic sites, and Ce induces the activation of Co species and reduces the Co-O binding energy. Benefiting from the IIE of Ni and Ce, the optimized CeLaNiCoO exhibits excellent OER performance with an overpotential of only 330 mV when the current density reached 10 mA cm, the Tafel slope of 70.93 mV dec as well as good stability. Theoretical calculations further reveal that the OER occurring on CeNi-LaCoO follows the LOM mechanism, and IIE caused by the doping of the Ce, Ni dual site induces the conversion of Co to Co, optimizes the electron arrangement, modulates the electron transfer capacity of the Co site, promotes the conversion of lattice oxygen to OH, lowers the energy barrier for the participation of bulk oxygen in the OER, and thus promotes the OER performance. This work is expected to provide reliable support for the application of high-efficiency perovskite-based OER catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202500144 | DOI Listing |
Cancer Rep (Hoboken)
September 2025
Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan.
Background: Cancer of unknown primary (CUP) is a challenging malignancy characterized by metastatic tumors with an unidentified primary site, even after extensive pathological and radiographic evaluation. Recent advancements in gene expression profiling and comprehensive genomic profiling (CGP) using next-generation sequencing (NGS) have enabled the identification of potential tissue origins, thereby facilitating personalized treatment strategies. Although most cases of CUP present as adenocarcinomas or poorly differentiated tumors, the treatment remains largely empirical, with limited success from molecularly tailored therapies.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:
Potato virus Y (PVY) is one of the most economically detrimental phytoviruses affecting global Solanaceae, possessing challenges in agrochemical control. The structural elucidation of PVY coat protein (CP) offers opportunities for the rational design of CP-targeted antivirals; however, the feasibility of identifying lead compounds via virtual screening remains largely unexplored. Herein, we report the successful case of structure-based virtual screening leveraging PVY CP, enabling the identification of a structurally novel lead with a unique mechanism of action.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Marine Engineering College, Dalian Maritime University, Dalian, 116026, China. Electronic address:
On-site and accurately detecting, sizing and counting living algae are greatly needed under International Ballast Water Convention, yet still challenging due to the lack of miniatured device. In this paper, a miniatured microscope that has both blue view field and fluorescence field was developed. Dual-view-field with one exciting light is achieved by using a beam splitter to direct the light into two mini cameras.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Zhangjiagang Institute of Nanjing Tech University, Suzhou, 215600, PR China. Electronic address:
Background: Zinc (Zn) and cadmium (Cd) ions are ubiquitous in industrial and daily life. Despite their critical impact on food safety and human health, current probes face significant limitations in simultaneously detecting both ions in complex food matrices.
Results: Herein, we successfully developed a pyrene-based FRET ratiometric fluorescent probe QP for the highly selective detection of Zn and Cd.
Anal Chim Acta
November 2025
Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of Ministry of Education, Bao
Background: In the contemporary era of rapid digital advancement, information security is closely associated with our daily life. From personal information to state secrets, all domains are intricately linked with information. Consequently, the significance of information security has garnered growing attention from an ever-increasing number of individuals.
View Article and Find Full Text PDF