98%
921
2 minutes
20
Background: Osteoporosis, which is a prevalent metabolic bone disease, is closely associated with imbalances in the gut microbiota.
Methods: The ovaries of female 6-month-old Sprague-Dawley rats were surgically removed to induce osteoporosis. Subsequently, 16S rRNA sequencing was employed to characterize the gut microbiota in the osteoporotic rats. Bone marrow mesenchymal stem cells (BMSCs) were isolated from osteoporotic rats and cultured separately, and their osteogenic and adipogenic differentiation was observed. Furthermore, exosomes were extracted from these cells, and miRNA sequencing was performed on the exosomes to identify key miRNAs. Osteoporotic rats were then treated with a member of the gut microbiota, and changes in the osteogenic and adipogenic differentiation of BMSCs were observed.
Results: In our investigation, we observed altered proportions of Firmicutes and Bacteroidetes in the guts of ovariectomized rats, which contributed to dysbiosis and subsequent changes in intestinal permeability. The BMSCs exhibited disrupted osteogenic/adipogenic differentiation, which was associated with structural damage to bones. Through the isolation of exosomes from BMSCs and subsequent miRNA analysis, we identified miR-151-3p and miR-23b-3p as potential pivotal regulators of bone metabolism. Furthermore, through 16S rRNA sequencing, we identified g_Ruminococcus and its marked capacity to ameliorate the imbalance in BMSC osteogenic/adipogenic differentiation. Intervention with g_Ruminococcus demonstrated promising outcomes, mitigating bone loss and structural damage to the tibia and femur in ovariectomized rats.
Conclusions: These findings highlight the significant role of g_Ruminococcus in alleviating osteoporosis induced by estrogen deficiency, suggesting its therapeutic potential for addressing postmenopausal osteoporosis through the targeted modulation of BMSC-derived exosomal miR-151-3p and miR-23b-3p.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921539 | PMC |
http://dx.doi.org/10.1186/s13287-025-04256-y | DOI Listing |
ACS Nano
September 2025
Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical Univer
Osteoporotic fractures are notoriously difficult to heal due to an imbalance between osteoblasts and osteoclasts. Current treatments often have limited efficacy or adverse side effects, necessitating safer and more effective solutions. Here, we developed an injectable plant-derived phosphate coordination compound-based adhesive hydrogel (MgPA-Gel) to restore bone homeostasis by integrating magnesium ions (Mg)-phytic acid (PA) nanoparticles with aminated gelatin (Gel-NH) and aldehydated starch (AS).
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
September 2025
Abyss Ingredients, Caudan, France.
The development of functional materials for osteoporosis is essential for effective bone remodeling. In this context, the extraction of biocompatible implantable biomaterials from bio-waste emerges as a valuable strategy, addressing both environmental challenges and promoting human health. The objective of this work was to evaluate the physicochemical properties of the added-value by-product biomaterial (SS-90), extracted from sardine scales (Sardina Pilchardus) and combined with chitosan (SS-90-CH).
View Article and Find Full Text PDFAnalyst
September 2025
Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
: Postmenopausal conditions can lead to metabolic disorders such as obesity and steatosis. (PT), a prominent traditional Chinese medicine, exerts potential therapeutic effects against hepatic injury. Nevertheless, the extent to which PT ameliorates liver damage resulting from estrogen deficiency, along with the associated mechanisms, remains poorly understood.
View Article and Find Full Text PDFAnn Med Surg (Lond)
September 2025
Department of Oral and Maxillofacial Surgery, Tishreen University Hospital, Lattakia, Syria.
Background: The purpose of this study is to evaluate the effectiveness of simvastatin in the bone formation of osteoporotic mandible in the rat model.
Methods And Materials: Eight Wistar male rats at the age of 6 months, with a weighted average of 250-300 grams, were purchased from the Atomic Energy Authority in Damascus (Syria). Osteoporosis was induced through bilateral orchiectomy, a procedure that involves the removal of the testes, under anesthesia with a combination of ketamine and xylazine.
Biomimetics (Basel)
August 2025
Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho-UNESP, Aracatuba 16015-050, SP, Brazil.
Osteoporosis compromises bone quality and impairs implant osseointegration. Since an adequate bone bed is essential for implant stability and success, this study evaluated the effects of implant surface functionalization with zoledronic acid (ZOL), alone or combined with ruterpy (TERPY), on peri-implant bone healing in healthy (SHAM) and osteoporotic (OVX) rats. ZOL has antiresorptive properties, while TERPY exhibits osteoinductive potential.
View Article and Find Full Text PDF