98%
921
2 minutes
20
The simultaneous generation and stabilization of triplet excitons are the key to realizing efficient organic room temperature phosphorescence (RTP), which is challenging owing to the obscure mechanism and structure-property relationships. Herein, a strategy of lone-pair-mediated multiple through-space interactions (TSIs) is proposed to availably induce RTP. By incorporating heteroatoms to facilitate through-space n-n and n-π interactions, the lone pairs are delocalized throughout the structure, resulting in the dense splitting of the excited-state energy levels. Thus, more matched energy levels with a small energy gap between singlet and triplet states (Δ) emerge, resulting in multiple intersystem crossing (ISC) transition channels that assist triplet excitons generation. The strong TSIs also effectively rigidify the molecular structures and thus stabilize triplet excitons for radiation. Furthermore, the manipulation of TSI intensity allows efficiency enhancement, persistent time prolongation, and tolerance to high temperatures of RTP. This work not only explores the fundamental principle of the RTP mechanism from a new view but also provides a universal strategy for ISC promotion and triple excitons stabilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5c02567 | DOI Listing |
Chem Sci
August 2025
Key Laboratory of Theoretical and Computational Photochemistry of the Chinese Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
As a class of functional materials used in organic light-emitting diodes (OLEDs), sensitizers play a crucial role in the improvement of device efficiency, color purity, and stability. In recent years, thermally activated delayed fluorescence (TADF) sensitizers have attracted much attention mainly because of their high exciton utilization efficiency by converting quenched triplet excitons into singlet excitons. Despite the experimental success of sensitization strategies in enhancing OLED performance, the lack of theoretical models for sensitizers continues to hinder further development.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, PR China.. Electronic address:
Near-infrared (NIR) fluorophores, characterized by emission wavelengths exceeding 650 nm, have garnered significant attention due to their diverse and advanced applications in fields such as organic light-emitting diodes (OLEDs), photomicrography, anti-counterfeiting, in vivo/vitro bioimaging, as well as theranostics. In this study, we report the rational design and facile synthesis of a novel NIR fluorescent molecule, AA-TPA, strategically constructed by integrating two twisted triphenylamine (TPA) electron-donating groups with a dibenzo[def,mno]chrysene-6,12-dione (AA) electron-accepting unit. The pronounced donor-acceptor interaction within the non-planar and rigid molecular architecture facilitates NIR emission with a peak at 667 nm, while preserving efficient luminescence with a photoluminescence quantum yield of 46 % in a doped film.
View Article and Find Full Text PDFNat Commun
August 2025
State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
Charge-transfer (CT) states with long transport distances are highly desired for promoting the performance of organic optoelectronic devices in photoconversion and electroluminescence. However, due to the limited lifetime and small diffusivity, only nanoscale CT transport has been observed so far. Herein, taking a binary CT cocrystal (trans-1,2-diphenylethylene-1,2,4,5-tetracyanobenzene, named as T-T) with efficient thermally activated delayed fluorescence (TADF) as a model material, we report the direct observation of long-distance CT exciton transport by using modified time-resolved and photoluminescence-scanned imaging microscopy, which reveals a triplet-assisted CT transport mechanism.
View Article and Find Full Text PDFJACS Au
August 2025
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
Type I photosensitizers (PSs) have revolutionized traditional photodynamic therapy for hypoxia tumors by eliminating oxygen dependence. Nevertheless, the current development of Type I PSs faces formidable obstacles stemming from the paucity of universal regulatory strategies that steer molecular systems toward efficient reactive oxygen species (ROS) generation through the Type I electron transfer pathway. Herein, we propose the "liberating exciton transfer" strategy to construct a series of Type I PSs (IDMX, X = H, F, Cl, Br) with remarkable generation of superoxide radicals (O ) and hydroxyl radicals (•OH).
View Article and Find Full Text PDFMacromol Rapid Commun
August 2025
State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, China.
Amorphous organic polymers with long-lived room-temperature phosphorescence (RTP) characteristics offer intriguing possibilities to advance information security, biological imaging, optoelectronic devices, and intelligent sensors. Despite the recent advances, access to phosphorescent polymers with excellent stretchability and shape memory performance remains a challenge. Herein, nanostructured RTP block copolymers biomimicking mussel cuticles were achieved by atom transfer radical polymerization (ATRP).
View Article and Find Full Text PDF