98%
921
2 minutes
20
Unlabelled: (PZ) is a widely distributed medicinal herb throughout Bangladesh, especially in tribal regions. The present study focused on evaluating the bioactivity like antioxidant, cytotoxicity, anti-hemolytic activity through in-vitro assessment and predicted potential antiviral compounds against Nipah virus employing in-silico approaches from stem extract of . The bioactivities of stem extract showed potent antioxidant and anti-hemolytic activity. Comparatively, its cytotoxicity, with an IC of 123.786 ± 1.328 µg/ml, suggests moderate toxicity, making it a potential source for therapeutics. Through GCMS analysis, 17 compounds were identified from the stem extract. On the other hand, the potent ligand targeting attachment glycoprotein, the key factor during the host-pathogen attachment and disease (encephalitis) progression, of the Nipah virus (NiV-G) was predicted through in-silico approaches employing ADMET analysis, molecular docking, quantum mechanics (QM) and molecular dynamic simulation (MDS). With a docking score of - 7.4kCal/mol in molecular docking analysis between phytochemicals and NiV-G, Bisphenol-C (CID6620) has been identified as a potent ligand among the phytochemicals present in PZ stem extract. The QM analysis suggests kinetic stability with better chemical reactivity and the docked complex was found stable in MDS for 100 ns. Based on all those evaluations, the compound could be considered a potent ligand for NiV-G and indicates a promising antiviral drug candidate.
Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-025-00328-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906965 | PMC |
http://dx.doi.org/10.1007/s40203-025-00328-2 | DOI Listing |
Chem Biodivers
September 2025
Institute of Chemistry, Federal University of Catalão, Catalão, Brazil.
Strategies have been employed to address antimalarial drug resistance, including the exploration of new therapeutic targets. In this study, the stem bark of Dalbergia miscolobium was investigated using in vitro assays against Plasmodium falciparum and pyruvate kinase II (PyrKII), an essential enzyme for parasite development. Compounds were dereplicated from ethanolic extract (IC = 9 µg/mL) using LC-HRMS, revealing active constituents: procyanidin A1 (2), biochanin (5) and formononetin (7).
View Article and Find Full Text PDFIEEE Trans Nanobioscience
September 2025
Extracellular vesicles (EVs) produced by stem cells are nanoscale carriers of bioactive compounds with regenerative and immunomodulatory capabilities similar to those of their parent cells. Their therapeutic potential outperforms traditional stem cell therapies by lowering hazards such tumorigenicity and allowing for precise delivery. To provide a high-efficiency platform for selectively isolating stem cell EVs from minimal serum quantities while overcoming the constraints of traditional approaches such as ultracentrifugation, we developed an immunoaffinity-based capture system utilizing SiO₂ wafers functionalized with gold nanoparticles (GNPs), polyethylene glycol (HS-PEG-COOH), and stem cell-specific antibodies.
View Article and Find Full Text PDFInt J Cancer
September 2025
Laboratory for Computational Physiology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
The rise in cancer patients could lead to an increase in intensive care units (ICUs) admissions. We explored differences in treatment practices and outcomes of invasive therapies between patients with sepsis with and without cancer. Adults from 2008 to 2019 admitted to the ICU for sepsis were extracted from the databases MIMIC-IV and eICU-CRD.
View Article and Find Full Text PDFRegen Med
September 2025
Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.
Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.
Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.
Open Med (Wars)
August 2025
Department of Burns and Wound Repair, Weifang People's Hospital, Shandong Second Medical University, Weifang, China.
Objective: Hypertrophic scars (HS) are a fibrotic proliferative disorder that results from an abnormal wound healing process, presenting significant challenges for clinical intervention. The primary characteristics of HS include excessive collagen deposition and angiogenesis. In recent years, the study of mesenchymal stem cells (MSCs) and their derived exosomes has emerged as a prominent area of research within the academic community.
View Article and Find Full Text PDF