Plant-derived Bisphenol C is a drug candidate against infection: an in-vitro and in-silico study of (L.) Benn.

In Silico Pharmacol

Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: (PZ) is a widely distributed medicinal herb throughout Bangladesh, especially in tribal regions. The present study focused on evaluating the bioactivity like antioxidant, cytotoxicity, anti-hemolytic activity through in-vitro assessment and predicted potential antiviral compounds against Nipah virus employing in-silico approaches from stem extract of . The bioactivities of stem extract showed potent antioxidant and anti-hemolytic activity. Comparatively, its cytotoxicity, with an IC of 123.786 ± 1.328 µg/ml, suggests moderate toxicity, making it a potential source for therapeutics. Through GCMS analysis, 17 compounds were identified from the stem extract. On the other hand, the potent ligand targeting attachment glycoprotein, the key factor during the host-pathogen attachment and disease (encephalitis) progression, of the Nipah virus (NiV-G) was predicted through in-silico approaches employing ADMET analysis, molecular docking, quantum mechanics (QM) and molecular dynamic simulation (MDS). With a docking score of - 7.4kCal/mol in molecular docking analysis between phytochemicals and NiV-G, Bisphenol-C (CID6620) has been identified as a potent ligand among the phytochemicals present in PZ stem extract. The QM analysis suggests kinetic stability with better chemical reactivity and the docked complex was found stable in MDS for 100 ns. Based on all those evaluations, the compound could be considered a potent ligand for NiV-G and indicates a promising antiviral drug candidate.

Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-025-00328-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906965PMC
http://dx.doi.org/10.1007/s40203-025-00328-2DOI Listing

Publication Analysis

Top Keywords

stem extract
16
potent ligand
12
anti-hemolytic activity
8
nipah virus
8
in-silico approaches
8
molecular docking
8
plant-derived bisphenol
4
bisphenol drug
4
drug candidate
4
candidate infection
4

Similar Publications

Strategies have been employed to address antimalarial drug resistance, including the exploration of new therapeutic targets. In this study, the stem bark of Dalbergia miscolobium was investigated using in vitro assays against Plasmodium falciparum and pyruvate kinase II (PyrKII), an essential enzyme for parasite development. Compounds were dereplicated from ethanolic extract (IC  = 9 µg/mL) using LC-HRMS, revealing active constituents: procyanidin A1 (2), biochanin (5) and formononetin (7).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) produced by stem cells are nanoscale carriers of bioactive compounds with regenerative and immunomodulatory capabilities similar to those of their parent cells. Their therapeutic potential outperforms traditional stem cell therapies by lowering hazards such tumorigenicity and allowing for precise delivery. To provide a high-efficiency platform for selectively isolating stem cell EVs from minimal serum quantities while overcoming the constraints of traditional approaches such as ultracentrifugation, we developed an immunoaffinity-based capture system utilizing SiO₂ wafers functionalized with gold nanoparticles (GNPs), polyethylene glycol (HS-PEG-COOH), and stem cell-specific antibodies.

View Article and Find Full Text PDF

The rise in cancer patients could lead to an increase in intensive care units (ICUs) admissions. We explored differences in treatment practices and outcomes of invasive therapies between patients with sepsis with and without cancer. Adults from 2008 to 2019 admitted to the ICU for sepsis were extracted from the databases MIMIC-IV and eICU-CRD.

View Article and Find Full Text PDF

Engineering a cell-free bone regeneration platform using osteogenically primed MSC-EVs and nHAp-enriched IPN hydrogels.

Regen Med

September 2025

Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.

Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.

Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.

View Article and Find Full Text PDF

Objective: Hypertrophic scars (HS) are a fibrotic proliferative disorder that results from an abnormal wound healing process, presenting significant challenges for clinical intervention. The primary characteristics of HS include excessive collagen deposition and angiogenesis. In recent years, the study of mesenchymal stem cells (MSCs) and their derived exosomes has emerged as a prominent area of research within the academic community.

View Article and Find Full Text PDF