98%
921
2 minutes
20
CD19-directed chimeric antigen receptor (CAR)-T cells are breakthrough therapies for aggressive B-cell lymphomas, but less than half of patients achieve durable responses. We previously showed through whole-genome sequencing of tumors from CAR-T-treated patients that deletions of (3p21.31) are enriched in cases progressing after treatment. 's roles in resistance and pathogenesis are poorly defined, despite loss-of-function alterations that occur in ~20% of newly diagnosed diffuse large B-cell lymphoma (DLBCL) cases. To evaluate mechanisms of CAR-T resistance, we created RHOA-deficient DLBCL systems and confirmed cell-intrinsic loss of response to CAR-19 in vitro and in vivo. RHOA loss promotes AKT activation that impairs cell-intrinsic responses to interferon gamma (IFNγ). Moreover, expression of the CAR target CD19 is consistently down-regulated accompanied by a drive toward plasmablast differentiation. RHOA deficient tumors demonstrate greatly increased sensitivity to AKT-pathway inhibitors, which reverse impaired IFNγ responses. Lymphoma microenvironments in vivo in immunocompetent mice reveal that RHOA loss promotes decreased infiltration by cytotoxic T cells and enrichment of M2-polarized macrophages, known markers of CAR-T resistance in lymphoma clinical cases. Overall, we characterize RHOA deficiency as an AKT-mediated CAR-T resistance driver and implicate avoidance of T-cell mediated killing as a likely reason for RHOA's frequent loss in DLBCL pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908125 | PMC |
http://dx.doi.org/10.1101/2025.02.27.640687 | DOI Listing |
Ann Hematol
September 2025
Excellence Center for Comprehensive Cancer (ECCCC), King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
Despite therapeutic advances, multiple myeloma (MM) remains incurable, especially in relapsed/refractory (R/R) cases. B-cell maturation antigen (BCMA) is a key target for novel immunotherapies, including chimeric antigen receptor T-cell (CAR-T) therapies and bispecific T-cell engagers (BiTEs), which vary in efficacy, toxicity, and accessibility. To compare the efficacy and safety of BCMA-directed CAR-T therapies and BiTEs in R/R MM through a systematic review and meta-analysis.
View Article and Find Full Text PDFCancer Immunol Res
September 2025
Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.
Antibody-based therapies have revolutionized cancer treatment but have several limitations. These include: down-regulation of the target antigen; mutation of the target epitope; or in the case of antibody drug conjugates (ADCs), resistance to the chemotherapy warhead. Since TROP2-targeted therapy with ADCs yields responses in TROP2+ solid tumors but lacks the durability observed with other immunotherapy-based approaches, we developed novel TROP2-targeting chimeric antigen receptor (CAR) T cells as an alternative.
View Article and Find Full Text PDFFront Immunol
September 2025
Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.
Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.
Front Immunol
September 2025
Department of Rheumatology and Immunology, The First Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China.
CAR-T cell therapy has been proven effective in various autoimmune diseases, with most studies utilizing lentiviral-transduced CAR-T cells. In recent years, retroviral vector-transduced CAR-T cells-characterized by a high positivity rate, stable cell lines, and lower plasmid requirements-have attracted increasing attention. This article presents a complex case of a patient with SLE combined with APS and TBIRS.
View Article and Find Full Text PDFSemin Oncol
September 2025
Departments of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA. Electronic address:
Chimeric antigen receptor (CAR) T-cell therapy has changed how we treat blood cancers but hasn't worked as well for solid tumors like pancreatic ductal adenocarcinoma (PDAC), mainly because these tumors are very aggressive and resistant to regular treatments. This review critically examines peer-reviewed studies to chart the evolution of immunotherapy in PDAC, emphasizing the unique barriers to effective CAR T-cell treatment and emerging strategies to overcome them. CAR T-cells that focus on tumor-related markers like mesothelin, HER2, and MUC1 have shown promise in early research models.
View Article and Find Full Text PDF