A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Identification and validation of a major QTL, QFhb-6AL, for Fusarium head blight resistance on chromosome 6AL in wheat. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A novel major QTL, QFhb-6AL, accounting for 34.6% phenotypic variation for FHB resistance, was identified in the Chinese cultivar Xunong 029, and a near-diagnostic marker was developed for marker-assisted selection. Fusarium head blight (FHB) is a destructive disease in wheat (Triticum aestivum L.) that seriously threatens global wheat production and food safety. Host resistance is the most effective strategy for reducing FHB damage. The Chinese wheat cultivar Xunong 029 possesses desirable agronomic traits and demonstrates stable FHB resistance in multiple environments. A population of 190 F6 recombinant inbred lines (RILs) was developed by crossing Xunong 029 with Xumai 35 to identify quantitative trait loci (QTLs) for FHB resistance. The RIL population was genotyped by a low-coverage whole-genome sequencing (lcWGS) technology and evaluated for FHB symptom spread within a spike (Type II resistance) in both greenhouses and field experiments. A stable major QTL, designated as QFhb-6AL, was mapped to a 3.0 cM interval between markers lcWGS613.5 and lcWGS616.5 on the long arm of chromosome 6A, and it explained up to 34.6% of the phenotypic variation for FHB Type II resistance. QFhb-6AL was validated using near-isogenic lines (NILs) and another RIL population derived from the cross Xunong 029 and Xumai 33. Four kompetitive amplicon sequence PCR (KASP) markers which tightly linked to QFhb-6AL were developed. Haplotype analysis of the target QTL region showed a low frequency distribution of QFhb-6AL in Chinese cultivars, indicating that the QTL has not been widely deployed in wheat breeding programs. The QFhb-6AL has great potential for improving wheat FHB resistance, and the tightly linked markers developed in this study will facilitate its deployment in wheat breeding programs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-025-04864-5DOI Listing

Publication Analysis

Top Keywords

fhb resistance
16
xunong 029
16
major qtl
12
qtl qfhb-6al
8
head blight
8
resistance
8
346% phenotypic
8
phenotypic variation
8
fhb
8
variation fhb
8

Similar Publications