98%
921
2 minutes
20
Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910576 | PMC |
http://dx.doi.org/10.1038/s41538-025-00393-z | DOI Listing |
Microb Genom
September 2025
School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia.
causes otitis media and severe diseases including pneumonia, meningitis and bacteraemia. The rise of antimicrobial resistance (AMR) in , facilitated by mobile genetic elements (MGEs), complicates infection treatment. While pneumococcal conjugate vaccine (PCV) deployment has reduced disease burden, non-vaccine serotypes (NVTs) have increased and now cause invasive disease.
View Article and Find Full Text PDFVet Res Commun
September 2025
Department of Aquaculture, Faculty of Fisheries, Cukurova University, Adana, Turkey.
This study evaluated how dietary black seed oil (Nigella sativa L.) against the diazinon waterborne toxicity on Nile tilapia (Oreochromis niloticus), focusing on growth performance, hematological and biochemical parameters as well as oxidative stress markers and histological changes. A 40-day feeding trial was carried out using four experimental groups: Group 1 (control group), Group 2 (N.
View Article and Find Full Text PDFJ Vet Intern Med
September 2025
Department of Specialty Medicine, Midwestern University College of Veterinary Medicine, Glendale, Arizona, USA.
Background: Vitamin D modulates the immune response in many species, including dogs. To date, research investigating the immunological effects of vitamin D in dogs is limited to in vitro studies.
Objectives: Provide PO calcifediol supplementation to healthy dogs to evaluate its tolerability and assess its effect on leukocyte production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10.
Reprod Domest Anim
September 2025
Department of Teaching Veterinary Clinical Complex, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
The present study was undertaken to assess the effect of kisspeptin supplementation (0.0, 5.0, 10.
View Article and Find Full Text PDFArch Pharm (Weinheim)
September 2025
Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
Nitazoxanide (NTZ), an FDA-approved drug, served as the framework for synthesizing 22 new broad-spectrum antimicrobial agents from 4-aminosalicylic acid via protection-deprotection, Staudinger reduction, Clauson-Kaas pyrrole synthesis, and nucleophilic substitution. These compounds were evaluated for antibacterial, antimycobacterial, and antitrypanosomal activities. Several compounds, particularly 10, 11, 13, and 22, surpassed the antibacterial activity of NTZ and its active metabolite tizoxanide (TIZ) against all tested pathogens, with MICs ranging from 1.
View Article and Find Full Text PDF