A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Predicting Postoperative Neurological Outcomes in Metastatic Spinal Tumor Surgery Using Machine Learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Study Design: Retrospective analysis of data collected across multiple centers.

Objective: To develop machine learning models for predicting neurological outcomes one month postoperatively in patients with metastatic spinal tumors undergoing surgery, and to identify key factors influencing neurological recovery.

Summary Of Background Data: The increasing prevalence of spinal metastases has led to a growing need for surgical intervention to address mechanical instability and neurological deficits. Predicting postoperative neurological status, as assessed by the Frankel classification, can provide valuable insights for surgical planning and patient counseling. Traditional prognostic models have shown limitations in capturing the complexity of neurological recovery patterns.

Methods: We analyzed data from 244 patients who underwent spinal surgery for metastatic disease across 38 institutions. The primary outcome was functional ambulation, defined as Frankel grades D or E at one month postoperatively. Four machine learning algorithms (Random Forest, XGBoost, LightGBM, and CatBoost) were used to build predictive models. Feature selection employed the Boruta algorithm and Variance Inflation Factor analysis to reduce multicollinearity.

Results: Among the 244 patients, the proportion of ambulatory patients (Frankel grades D or E) increased from 36.8% preoperatively to 63.1% at one month postoperatively. The Random Forest model achieved the highest area under the receiver operating characteristic curve (AUC-ROC) of 0.8516, followed by XGBoost (0.8351), CatBoost (0.8331), and LightGBM (0.8098). SHapley Additive exPlanations analysis identified preoperative Frankel classification, transfer ability, inflammatory markers (C-reactive protein, white blood cell-lymphocyte), and surgical timing as the most important predictors of postoperative outcomes.

Conclusions: Machine learning models showed strong predictive performance in assessing postoperative neurological status for patients with metastatic spinal tumors. Key factors including preoperative neurological function, functional ability, and inflammation markers significantly influenced outcomes. These findings could inform surgical decision-making and help set realistic postoperative expectations while potentially improving patient care through more accurate outcome prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BRS.0000000000005322DOI Listing

Publication Analysis

Top Keywords

machine learning
16
postoperative neurological
12
metastatic spinal
12
month postoperatively
12
predicting postoperative
8
neurological
8
neurological outcomes
8
learning models
8
patients metastatic
8
spinal tumors
8

Similar Publications