Investigating the visible range photoresponse of an organic single-crystal analogue of the green fluorescent protein.

Nanoscale

Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The growing demand for lightweight, flexible, semi-transparent and low-cost photodetectors (PDs) in wearable electronics and optical communication systems has prompted studies to investigate organic materials as feasible alternatives to conventional inorganic PDs. However, modern organic PDs often face responsivity, detectivity, and photoresponse speed limitations, particularly in the visible range. Here, we present the photoresponse of an organic single-crystal analogue of the green fluorescent protein (GFP) chromophore photodetector, fabricated on a silicon nitride substrate. A significant increase in photocurrent was detected upon illumination with visible wavelengths (532 nm, 630 nm, and halogen light). A remarkably consistent and repeatable photoresponse was obtained during the ON and OFF illumination cycles. The device showed the dependence of photocurrent on the applied bias voltages. The measured photocurrent, responsivity, detectivity, rise time, decay time, noise equivalent power and external quantum efficiency are studied for different wavelengths. Strikingly, the fabricated device demonstrates excellent performance in the visible region compared to several conventional organic and inorganic PDs. The observed responsivity and detectivity values for the device are 98 mA W and 7.94 × 10 Jones, respectively. Furthermore, the device also exhibits rapid photoresponse dynamics with a rise time of 180 ms and a decay time of 152 ms. The excellent photodetection features indicate that the single crystal GFP could serve as a versatile broadband material for future applications in optoelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr05252hDOI Listing

Publication Analysis

Top Keywords

responsivity detectivity
12
visible range
8
range photoresponse
8
photoresponse organic
8
organic single-crystal
8
single-crystal analogue
8
analogue green
8
green fluorescent
8
fluorescent protein
8
inorganic pds
8

Similar Publications

MoSe nanosheet/Si heterojunction photodetectors were fabricated by a mechanical exfoliation method, and their electrical and optical properties at different temperatures were investigated. It was found that the MoSe nanosheet/Si heterojunction device exhibited excellent rectification characteristics at room temperature, and the rectification ratio gradually decreased with the decrease of temperature. The temperature-dependent electrical properties of the MoSe/Si heterojunction device were actually caused by the inhomogeneity of the potential barrier.

View Article and Find Full Text PDF

Near-infrared (NIR) narrowband photodetectors, featuring high sensitivity, excellent wavelength selectivity, and narrow full width at half-maximum (fwhm), enable efficient detection of specific NIR wavelengths and are widely used in optical communication, environmental monitoring, spectroscopy, and scientific research. In this study, we present a self-powered NIR photodetector based on a silicon nanowire (SiNW) array, exhibiting an ultranarrowband response centered at 1120 nm. The device employs a simple Schottky junction architecture.

View Article and Find Full Text PDF

Dual sulfur sources redox dynamics guided growth of 〈hk1〉-oriented SbS microrods: lattice strain modulation for ultra-low dark current.

J Colloid Interface Sci

September 2025

College of Physics and Electronic Information, Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, China. Electronic address:

Antimony trisulfide (SbS) has emerged as a promising inorganic semiconductor for optoelectronics due to its distinctive anisotropic crystal structure and suitable bandgap (∼1.7 eV). While hydrothermal synthesis remains challenging for achieving high crystallinity and controlled morphology, we developed an innovative dual‑sulfur precursor strategy utilizing sodium thiosulfate (STS) and thioacetamide (TAA) at a 7:2 M ratio with SbCl.

View Article and Find Full Text PDF

To assess the efficacy of a mixed-dimensional van der Waals (vdW) heterostructure in modulating the optoelectronic responses of nanodevices, the charge transport properties of the transition-metal dichalcogenide (TMD)-based heterostructure comprising zero-dimensional (0D) WS quantum dots (QDs) and two-dimensional (2D) MoS flakes are critically analyzed. Herein, a facile strategy was materialized in developing an atomically thin phototransistor assembled from mechanically exfoliated MoS and WS QDs synthesized using a one-pot hydrothermal route. The amalgamated photodetectors exhibited a high responsivity of ∼8000 A/W at an incident power of 0.

View Article and Find Full Text PDF

High Detectivity and Low-Dark Current in Organic Photodetectors by a High-Content Nonfullerene Acceptor-Based Bulk Heterojunction with a Polymer Overlayer.

ACS Appl Mater Interfaces

September 2025

Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan 46241, Republic of Korea.

To achieve high detectivity in organic photodetectors, the suppression of the dark current density and the improvement of responsivity are necessary at the same time. In this work, we introduce a polymer donor overlayer on top of the high-acceptor-content bulk heterojunction film to minimize the randomness of charge pathways in the mixed phase of donor/acceptor blends. This design strategy of the active layer successfully suppresses the dark current density to 2.

View Article and Find Full Text PDF