98%
921
2 minutes
20
Heavy metal (HM) contamination of agricultural products is of global environmental concern as it directly threatened the food safety. Plant-associated microbiome, particularly endophytic microbiome, hold the potential for mitigating HM stress as well as promoting plant growth. The metabolic potentials of the endophytes, especially those under the HM stresses, have not been well addressed. Rice, a major staple food worldwide, is more vulnerable to HM contamination compared to other crops and therefore requires special attentions. Therefore, this study selected rice as the target plants. Geochemical analysis and amplicon sequencing were combined to characterize the rice root endophytic bacterial communities and identify keystone taxa in two HM-contaminated rice fields. Metagenomic analysis was employed to investigate the metabolic potentials of these keystone taxa. Burkholderiales and Rhizobiales were identified as predominant keystone taxa. The metagenome-assembled genome (MAG)s associated with these keystone populations suggested that they possessed diverse genetic potentials related to metal resistance and transformation (e.g., As resistance and cycling, V reduction, Cr efflux and reduction), and plant growth promotion (nitrogen fixation, phosphate solubilization, oxidative stress resistance, indole-3-acetic acid, and siderophore production). Moreover, bacteriophages encoding auxiliary metabolism genes (AMGs) associated with the HM resistance as well as nitrogen and phosphate acquisition were identified, suggesting that these phages may contribute to these crucial biogeochemical processes within rice roots. The current findings revealed the beneficial roles of rice endophytic keystone taxa and their associated bacteriophages within HM-contaminated rice root endophytic microbiome, which may provide valuable insights on future applications of employing root microbiome for safety management of agriculture productions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2025.126028 | DOI Listing |
Mar Life Sci Technol
August 2025
State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.
Unlabelled: Anaerobic ammonium oxidation (anammox) plays a critical role in nitrogen loss in estuarine and marine environments. However, the mechanisms underlying the formation and maintenance of the anammox bacterial community remain unclear. This study analyzed the anammox bacterial diversity, community structure, and interspecific relationships in three estuaries along the Chinese coastline -the Changjiang Estuary (CJE), the Oujiang Estuary (OJE), and the Jiulong River Estuary (JLE) - as well as the South China Sea (SCS) to elucidate their community assembly mechanisms.
View Article and Find Full Text PDFSci Total Environ
September 2025
Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, PB.901, 2050, Hammam-Lif, Tunisia. Electronic address:
Climate change is challenging agriculture and food security due to the limited adaptability of domesticated crops. While plant range shifts along latitudinal and altitudinal gradients are well-documented, their impacts on belowground microbial communities and plant adaptability remain poorly understood. Vitis vinifera subsp.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China.
The rhizosphere microbiomes of halophytes are crucial for plant adaptation to high-salinity soil conditions, but how to harness rhizosphere microbes to confer salt stress resistance to plants remains obscure. This study aimed to establish a framework (isolate-select-construct) for tailoring simplified salt-tolerant synthetic microbial communities (SynComs) and explore how they confer salt stress resistance to the plant. First, a total of 512 strains were isolated from the high-salt rhizosphere soil of Populus euphratica through high-throughput cultivation.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
Although diversified crop rotations increase drought tolerance and system productivity, the underlying mechanisms conferring this resilience in crop-soil-microorganisms systems remain incomplete. Maize drought tolerance mechanisms were evaluated in a 20-year experiment with low, medium, and high crop diversity rotations using soil zymography to visualize enzyme activity distribution and high-throughput sequencing to assess microbial communities. High crop diversity increased maize shoot biomass by 56%-87% and reduced drought-induced root biomass loss by 14%-59% compared to low crop diversity.
View Article and Find Full Text PDFJ Environ Manage
August 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health
Multiple residual herbicides persist in soil of soybean-producing areas, posing a continuous risk to soil ecosystem. While the understanding of combined herbicide effects on soil/plant health related specific microbial communities (e.g.
View Article and Find Full Text PDF