98%
921
2 minutes
20
Background: The International Study Group of Pancreatic Surgery has established the definition and grading system for postpancreatectomy acute pancreatitis (PPAP). There are no established machine learning models for predicting PPAP following pancreaticoduodenectomy (PD).
Aim: To explore the predictive model of PPAP, and test its predictive efficacy to guide the clinical work.
Methods: Clinical data from consecutive patients who underwent PD between 2016 and 2024 were retrospectively collected. An analysis of PPAP risk factors was performed, various machine learning algorithms [logistic regression, random forest, gradient boosting decision tree, extreme gradient boosting, light gradient boosting machine, and category boosting (CatBoost)] were utilized to develop predictive models. Recursive feature elimination was employed to select several variables to achieve the optimal machine algorithm.
Results: The study included 381 patients, of whom 88 (23.09%) developed PPAP. PPAP patients exhibited a significantly higher incidence of postoperative pancreatic fistula (55.68% 14.68%, < 0.001), grade C postoperative pancreatic fistula (9.09% 1.37%, = 0.001). The CatBoost algorithm outperformed other algorithms with a mean area under the receiver operating characteristic curve of 0.859 [95% confidence interval (CI): 0.814-0.905] in the training cohort and 0.822 (95%CI: 0.717-0.927) in the testing cohort. According to shapley additive explanations analysis, pancreatic texture, main pancreatic duct diameter, body mass index, estimated blood loss, and surgery time were the most important variables based on recursive feature elimination. The CatBoost algorithm based on selected variables demonstrated superior performance, with an area under the receiver operating characteristic curve of 0.837 (95%CI: 0.788-0.886) in the training cohort and 0.812 (95%CI: 0.697-0.927) in the testing cohort.
Conclusion: We developed the first machine learning-based predictive model for PPAP following PD. This predictive model can assist surgeons in anticipating and managing this complication proactively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886510 | PMC |
http://dx.doi.org/10.3748/wjg.v31.i8.102071 | DOI Listing |
Front Digit Health
August 2025
Department of Ophthalmology, Stanford University, Palo Alto, CA, United States.
Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
Neurotrauma Rep
August 2025
Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).
View Article and Find Full Text PDFJ Clin Exp Hepatol
August 2025
Dept of Histopathology, PGIMER, Chandigarh, 160012, India.
Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.
View Article and Find Full Text PDFFront Rehabil Sci
August 2025
Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.
Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.