Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, there has been a surge of research focused on in situ-forming implants as a method of localized drug delivery. Despite advancements, the predominant challenge in situ-forming solvent-induced phase inversion (SIPI) implants is significant burst release which typically occurs within the first 24 h post-administration. Another notable challenge is the real-time characterization of these implants, which is crucial for understanding their in situ formation and degradation mechanism. This study explores the impact of various hydrophilic polymers-hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), Carbopol, and carboxymethylcellulose (CMC) - on implant formation and drug release. SIPI systems, which are commonly composed of poly(lactic-co-glycolic acid) (PLGA) and N-methyl pyrrolidone (NMP), offer localized, controlled drug release but suffer from an initial burst within 24 h post-administration. The incorporation of hydrophilic polymers aims to modulate this release and improve implant properties. For first-time, optical coherence tomography (OCT) imaging was employed for non-invasive assessment of the rate of in situ phase inversion and the resulting implant morphology, whereas scanning electron microscopy (SEM) and digital microscopy provided further insights into the internal structure of the implants. The results demonstrated that the inclusion of polymers such as HPMC and Carbopol effectively reduced burst release, whereas polymers such as HPC and CMC exhibited faster phase inversion, resulting in a more porous implant morphology and greater burst release. Additionally, the mechanical properties and mucoadhesive capabilities of the formulations were tested, suggesting that Carbopol-enhanced implants are particularly suitable for applications requiring prolonged retention at mucosal sites. This investigation provides critical insights into the design and optimization of SIPI systems for drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2025.103717DOI Listing

Publication Analysis

Top Keywords

phase inversion
16
drug delivery
12
burst release
12
solvent-induced phase
8
controlled drug
8
hydrophilic polymers
8
drug release
8
sipi systems
8
implant morphology
8
implants
6

Similar Publications

Tibia-Fibula Relative Motion During Gait Cycle by 2D-3D Registration.

J Orthop Res

September 2025

Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, Chaoyang District, China.

Injuries to the distal tibiofibular joint are often associated with ankle fractures, sports-related injuries, or instability, whereas proximal tibiofibular joint injuries are more commonly present with lateral- or posterolateral-compartment lesions of the knee. These conditions may be related to the relative motion between the tibia and fibula; however, precise movement patterns have yet to be fully elucidated. This study analyzes the relative motion of the tibia and fibula in 16 healthy adults (32 bones; 8 males and 8 females) throughout a normal gait cycle.

View Article and Find Full Text PDF

Lipid nanocapsules (LNCs) are an emerging nanocarrier platform for cancer therapy as they can co-deliver multiple drugs, promote synergistic action, and provide targeted drug delivery. The phase inversion temperature (PIT) process is most used for LNC formulation, which has the advantage of process simplicity, thermodynamic stability, and the employment of non-toxic solvents without requiring high energy input. Surface functionalization with targeting ligands like folic acid and peptides increases tumor specificity and reduces off-target toxicity.

View Article and Find Full Text PDF

Purpose: Gadoxetic acid-enhanced hepatobiliary phase T-weighted (Tw) MRI is effective for the detection of focal liver lesions but lacks sufficient T contrast to distinguish benign from malignant lesions. Although the addition of T, diffusion, and dynamic contrast-enhanced Tw imaging improves lesion characterization, these methods often do not provide adequate spatial resolution to identify subcentimeter lesions. This work proposes a high-resolution, volumetric, free-breathing liver MRI method that produces colocalized fat-suppressed, variable Tw images from a single acquisition, thereby improving both lesion detection and characterization.

View Article and Find Full Text PDF

BackgroundTo investigate the clinical utility of shear wave elastography (SWE) in the diagnosis and prognostic evaluation of acute anterior talofibular ligament (ATFL) injuries.MethodsThis prospective cohort study enrolled 46 patients with unilateral acute ATFL injuries and 32 age and gender-matched healthy volunteers. All patients underwent B-mode ultrasonography and SWE within 48 h post-injury and at 3 month post-rehabilitation.

View Article and Find Full Text PDF

Materials exhibiting coexisting exploitable properties often result in especially attractive behavior from both fundamental and applied perspectives. In particular, magnetoelectric materials combining ferroelectric and magnetic properties are increasingly becoming paramount nowadays. Here, we show that FeH(PO) exhibits proton conductivity and the coexistence of magnetic and polar structural features, suggesting that such frameworks may be of broader interest beyond the field of proton conductors.

View Article and Find Full Text PDF