Lipid nanocapsules (LNCs) are an emerging nanocarrier platform for cancer therapy as they can co-deliver multiple drugs, promote synergistic action, and provide targeted drug delivery. The phase inversion temperature (PIT) process is most used for LNC formulation, which has the advantage of process simplicity, thermodynamic stability, and the employment of non-toxic solvents without requiring high energy input. Surface functionalization with targeting ligands like folic acid and peptides increases tumor specificity and reduces off-target toxicity.
View Article and Find Full Text PDFAnticancer Agents Med Chem
June 2025
The KRAS (Kirsten rat sarcoma viral oncogene homolog) gene mutation is commonly found in colorectal, lung, and pancreatic carcinomas. Unfortunately, blocking KRAS straight away has proven to be challenging. PROTACs (Proteolysis Targeting Chimeras), a class of bifunctional molecules, are designed to break down proteins, offering a unique strategy to target KRAS and overcome the limitations of traditional inhibition.
View Article and Find Full Text PDFDasatinib (DSB) is a second-generation tyrosine kinase inhibitor widely used for treating chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL). Though clinically effective, DSB has some pharmacokinetic drawbacks evidenced by rapid systemic clearance, low oral bioavailability, and poor aqueous solubility requiring high doses for therapeutic action. Novel formulation strategies like solid dispersions, liposomal formulations, and PEGylated and hybrid nanoparticles enhance DSB's pharmacokinetic and pharmacodynamic profiles by enhancing drug solubility, stability, and controlled release.
View Article and Find Full Text PDFFor the pharmaceutical industry, hot-melt extrusion (HME) has become a cutting-edge production process. Compared to conventional procedures, HME is a solvent-free approach that offers numerous applications, cost-effectiveness, and continuous manufacturing. Studying the formulation and process characteristics should be prioritized in order to satisfy requirements.
View Article and Find Full Text PDFCancer therapies have advanced significantly, yet traditional treatments still confront obstacles, such as systemic toxicity and drug resistance. Nanotechnology plays a pivotal role in addressing these issues, particularly through the development of polymer nanocomposites (PNCs). PNCs are hybrid materials composed of a polymer matrix embedded with nanoscale fillers.
View Article and Find Full Text PDFArtificial intelligence (AI) is a rapidly transforming drug discovery and development process, significantly impacting the pharmaceutical industry and enhancing human health. This review article examines the tremendous role of AI in analyzing complex biological data, optimizing research processes, and reducing costs of production. Implementation of AI in the pharmaceutical sector can store a vast dataset of manufacturing processes, identify potential disease targets, simulate physiological conditions, and predict drug interactions.
View Article and Find Full Text PDFResistant pathogens are increasingly posing a heightened risk to healthcare systems, leading to a growing concern due to the lack of effective antimicrobial treatments. This has prompted the adoption of antimicrobial photodynamic therapy (aPDT), which eradicates microorganisms by generating reactive oxygen species (ROS) through the utilization of a photosensitizer, photons, and molecular oxygen. However, a challenge arises from the inherent characteristics of photosensitizers, including photobleaching, aggregation, and self-quenching.
View Article and Find Full Text PDFThe transdermal route is one of the effective routes for delivering drugs. It also overcomes many limitations associated with oral delivery. One of the limitations of this route is the drug's poor skin permeability-stratum corneum, the skin's outermost layer that also acts as a barrier for the drug to penetrate.
View Article and Find Full Text PDFThe current study aims to establish a novel ultra-deformable vesicular system to enhance the drug penetration across the skin by preparing the ketoconazole-loaded menthosomes. It was achieved through regular thin-film evaporation & hydration techniques. To examine the effect of formulation parameters on menthosome characteristics, a 2 full factorial design was used using Design-Expert® software.
View Article and Find Full Text PDFPharm Dev Technol
December 2024
Curr Pharm Des
February 2025
Introduction: The incidence of Central Nervous System (CNS) disorders, including Parkinson's disease, Alzheimer's disease, stroke, and malignancies, has risen significantly in recent decades, contributing to millions of deaths annually. Efficacious treatment of these disorders requires medicines targeting the brain. The Blood-brain Barrier (BBB) poses a formidable challenge to effective drug delivery to the brain, hindering progress in CNS therapeutics.
View Article and Find Full Text PDFThe study aimed to improve the transdermal permeation of IBU utilizing menthosomes as a vesicular carrier. IBU-loaded menthosomes were formulated by thin film hydration & optimized using 2 factorial designs (Design Expert® version 13 software). In vitro & ex vivo skin permeation analysis of IBU-encapsulated menthosomes was studied across the rat skin sample.
View Article and Find Full Text PDFIn the dynamic landscape of pharmaceutical advancements, the strategic application of active pharmaceutical ingredients to the skin through topical and transdermal routes has emerged as a compelling avenue for therapeutic interventions. This non-invasive approach has garnered considerable attention in recent decades, with numerous attempts yielding approaches and demonstrating substantial clinical potential. However, the formidable barrier function of the skin, mainly the confinement of drugs on the upper layers of the stratum corneum, poses a substantial hurdle, impeding successful drug delivery via this route.
View Article and Find Full Text PDFVesicular drug delivery systems have revolutionized the pharmaceutical field, offering a promising path for achieving targeted and sustained drug delivery. The oral, transdermal, and ocular routes of administration offer optimal ease in attaining desired therapeutic outcomes. However, conventional treatment strategies are all plagued with several challenges, such as poor skin permeability, ocular barriers, and gastrointestinal (GIT) degradation leading to vesicular disruption with the release of the encapsulated drug before reaching the targeted site of action.
View Article and Find Full Text PDFPolymer-lipid hybrid nanoparticles (PLHNs) have been widely used as a vehicle for carrying anticancer owing to its unique framework of polymer and lipid combining and giving the maximum advantages over the lipid and polymer nanoparticle drug delivery system. Surface modification of PLHNs aids in improved targeting and active delivery of the encapsulated drug. Therefore, surface modification of the PLHNs with the cell-penetrating peptide is explored by many researchers and is explained in this review.
View Article and Find Full Text PDFNano-theranostics (NTs) are versatile nanomaterials, explored in the current scenario of cancer therapy. A nano-theranostic material alone can diagnose and generate a therapeutic effect. Various materials have been explored for their NT action like gold and carbon-based material.
View Article and Find Full Text PDFIran J Pharm Res
January 2021
Elastic or deformable liposomes are phospholipid-based vesicular drug delivery systems that help improve the delivery of therapeutic agents through the intact skin membrane due to their deformable characteristics that overcome the problems of conventional liposomes. In the present review, different types of deformable liposomes such as transfersomes, ethosomes, menthosomes, invasomes and transethosome are studied, and their mechanism of action, characterization, preparation methods, and applications in pharmaceutical technology through topical, transdermal, nasal and oral routes for effective drug delivery are compared for their potential transdermal delivery of poorly permeable drugs. Due to the deformable characteristics of these vehicles, it resulted in modulation of increased drug encapsulation efficiency, permeation and penetration of the drug into or through the skin membrane and are found to be more effective than conventional drug delivery systems.
View Article and Find Full Text PDFThe present study is aimed at enhancing the skin penetration of ketoconazole by formulating it as transethosome. Ketoconazole-loaded transethosome formulations were prepared by conventional thin film evaporation and hydration method and were optimized using concentration of edge activator (span 80), ethanol and sonication time as factors and particle size, polydispersity index and entrapment efficiency as responses. The optimized formulation was further evaluated for in vitro diffusion, anti-fungal activity, ex vivo penetration and in vivo pharmacodynamic activity.
View Article and Find Full Text PDFTablets are the most customarily used solid oral unit dosage form for its better patient compliance. Preparation of these tablets include granulation, granule drying, die filling, and tablet coating as few unit operations and evaluation tests like dissolution test and disintegration test. These are the most crucial segments influencing the quality of the tablet.
View Article and Find Full Text PDFThe most common route of the drug administration is oral route despite the fact that most drugs have low oral aqueous solubility and bioavailability especially for BCS class II and class IV drugs. Many methods have been developed in recent years to overcome the poor solubility and oral bioavailability which includes self-emulsifying drug delivery systems (SEDDS) as one of the approaches. Not only for hydrophobic drugs, but also for hydrophilic compounds with low permeability, bioavailability can be enhanced by self nanoemulsifying drug delivery systems.
View Article and Find Full Text PDFThis research work deals with in vivo testing of the efficacy of commercial moisturizer products on the hydration of human skin, as there are various in vitro and ex vivo studies questioning their activity. Confocal Raman spectroscopy was used for this purpose of assessing the efficacy of moisturizers on skin hydration mainly owing to its simple, non-invasive, non-destructive, timesaving, and cost-effective nature. Water content and natural moisturizing factor (NMF) of stratum corneum were analyzed and compared using this method at high wavenumber (2500-4000 cm) and fingerprint (400-1800 cm) spectral regions, respectively, as these two parameters are correlated to skin hydration.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2018
Trans-resveratrol (3, 5, 4' trihydroxystilbene, RSV) is a natural compound that shows antioxidant, cardioprotective, anti-inflammatory and anticancer properties. The transdermal, painless application of RSV is an attractive option to other administration routes owing to its several advantages like avoiding gastrointestinal problems and first pass metabolism. However, its therapeutic potential is limited by its low solubility and low stability in water and the reduced permeability of stratum corneum.
View Article and Find Full Text PDFThis research work mainly deals with studying qualitatively the changes in the dermal collagen of two forms of striae distensae (SD) namely striae rubrae (SR) and striae albae (SA) when compared to normal skin (NS) using confocal Raman spectroscopy. The methodology includes an in vivo human skin study for the comparison of confocal Raman spectra of dermis region of SR, SA, and NS by supervised multivariate analysis using partial least squares discriminant analysis (PLS-DA) to determine qualitatively the changes in dermal collagen. These groups are further analyzed for the extent of hydration of dermal collagen by studying the changes in the water content bound to it.
View Article and Find Full Text PDFAAPS PharmSciTech
February 2018
This research work mainly deals with the application of confocal Raman spectroscopic technique to study in vivo human skin penetration of sunscreen products, as there are a lot of controversies associated with their skin penetration. Healthy human volunteers were tested for penetration of two commercial sunscreen products into their volar forearm skin for a period of 2 h. Measurements were taken before and after application of these sunscreen products.
View Article and Find Full Text PDF