A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Innovative Therapies for Oncogenic KRAS Mutations: Precision Strategies with PROTACs in Cancer Treatment. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The KRAS (Kirsten rat sarcoma viral oncogene homolog) gene mutation is commonly found in colorectal, lung, and pancreatic carcinomas. Unfortunately, blocking KRAS straight away has proven to be challenging. PROTACs (Proteolysis Targeting Chimeras), a class of bifunctional molecules, are designed to break down proteins, offering a unique strategy to target KRAS and overcome the limitations of traditional inhibition. This review discusses PROTACs targeting KRAS mutations in cancer, highlighting major findings, current limitations, and future perspectives. To achieve this, we thoroughly analyzed literature sourced from reputable databases, including PubMed, Google Scholar, and ScienceDirect. Various relevant articles were obtained from the reference section of the selected papers. PROTACs successfully induce the degradation of mutant KRAS in cell lines, leading to a decrease in cell viability compared to control groups. PROTAC treatment results in the suppression of downstream signalling pathways associated with KRAS, such as the MAPK and PI3K/AKT pathways. Animal studies demonstrate the ability of the PROTAC to effectively target KRAS-mutant tumors, inhibiting tumour growth without significant toxicities. New advances in this field can lead to cancer treatments that specifically target KRAS-mutant tumors.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0118715206377691250523095407DOI Listing

Publication Analysis

Top Keywords

kras mutations
8
target kras-mutant
8
kras-mutant tumors
8
kras
7
innovative therapies
4
therapies oncogenic
4
oncogenic kras
4
mutations precision
4
precision strategies
4
protacs
4

Similar Publications