Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Healthy eating choices and adequate nutritional foods are the most important factors in extending a person's life expectancy. Synthetic antioxidants are frequently used in the food industry as preservatives despite their toxicity and hence have drawn much attention for their accurate monitoring. This study explores the newly designed cobalt tetramenthol substituted phthalocyanine (CoTMPc) for the electrocatalytic detection of an artificial food preservative, , tertiary butylhydroquinone (TBHQ). A highly selective, cost-effective electrochemical probe is developed for the nanomolar detection of TBHQ. Its efficacy is evaluated and validated by different electrochemical techniques, namely cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA) and the CA results demonstrated a good sensitivity of 1.3102 μA nM cm with a linear range of 20-200 nM and a detection limit (LOD) of 4.5 nM in comparison to other techniques. The developed sensor was successfully applied to real samples. The CoTMPc electrode exhibited superior sensitivity, excellent selectivity, repeatability, and reproducibility, with anti-interference ability, over a broad linear range towards TBHQ detection. The mechanism of electrochemical detection is supported by fluorescence resonance energy/electron transfer and provides insights into the design of high-performing electroactive molecules that induce specificity and selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4tb02043jDOI Listing

Publication Analysis

Top Keywords

linear range
8
detection
6
bio-mimicking cobalt
4
cobalt tetramenthol-substituted
4
tetramenthol-substituted phthalocyanine-based
4
electrochemical
4
phthalocyanine-based electrochemical
4
electrochemical sensor
4
sensor selective
4
selective sensitive
4

Similar Publications

Importance: It is unclear whether the duration of amyloid-β (Aβ) pathology is associated with neurodegeneration and whether this depends on the presence of tau.

Objective: To examine the association of longitudinal atrophy with Aβ positron emission tomography (PET)-positivity (Aβ+) and the estimated duration of Aβ+ (Aβ+ duration), controlling for tau-positivity.

Design, Setting, And Participants: Data for this longitudinal cohort study were drawn from the Wisconsin Registry for Alzheimer Prevention and the Wisconsin Alzheimer Disease Research Center Clinical Core Study.

View Article and Find Full Text PDF

A method for determination of ten kinds of sweeteners in soybean products by multi-plug filtration cleanup (-PFC) combined with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. The sample was extracted with acetonitrile (containing 1% formic acid), degreased by using -hexane liquid-liquid extraction and purified by solid phase extraction using an -PFC column (Oasis PRiME HLB). The analytes were separated by using a Waters ACQUITY UPLC® BEH C (2.

View Article and Find Full Text PDF

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

MXene/PANI/SnO electrochemical sensor for the determination of 4-aminophenol.

Mikrochim Acta

September 2025

Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Northwest Normal University, Lanzhou, 730070, China.

An electrochemical sensor based on MXene/PANI/SnO nanomaterials was developed for the detection of 4-aminophenol (4-AP). In situ oxidative growth of PANI on the MXene surface effectively hindered the stacking of the lamellae and increased the specific surface area of the composites. Further complexation of tin dioxide with swelling properties of the structure provided adsorption and catalytic sites for 4-AP.

View Article and Find Full Text PDF

Radiation-induced single event effects in vertically prolonged drain dual gate Si Ge source TFET.

J Mol Model

September 2025

Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna, Bihar, India.

Context: This study investigates the radiation tolerance of a SiGe source vertical tunnel field effect transistor (VTFET) under heavy ion-induced single event effects (SEEs). Single event effects (SEEs) occur when high-energy particles interact with semiconductor devices, leading to unintended behavior. The effect of high energy ions on the VTFET is examined for various linear energy transfer (LET) values and at multiple ion hit locations.

View Article and Find Full Text PDF