Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Developing a functional media for precise identification of trace shellfish toxin would underpin the effective assessment of marine pollution. Herein, a novel monolithic column with a dual-mode strategy integrating antifouling and aptamer bionic affinity recognition was proposed for online specific identification of the marine toxin okadaic acid (OA). The zwitterionic monomer 2-(methacryloyloxy)ethylphosphorylcholine (MPC) and aptamers were synergistically employed to enable efficient reduction of matrix interferences and selective capture of target OA. Preparation optimization, characterization, and fouling-resistant mechanism of the dual-mode bionic monolith were evaluated. The zwitterion phosphorylcholine MPC introduced into the monolith significantly improved the fouling resistance to biomass substrates, meanwhile the aptamers were able to provide a high specific recognition capacity. Coupled with LC-MS, the as-prepared monolith provided an effective approach for highly selective and sensitive identification of OA. Good recovery yields of over 90 % in shellfish tissue extracts and human serum were achieved with a sensitive limit of detection (LOD) as low as 0.1 ng/mL, as well as excellent specificity and low interference from proteins, fatty acids and analogues. Applied to popular shellfishes (such as clams, mussels, and oysters) and serum samples, trace OA toxin was accurately distinguished and quantified with satisfactory recoveries as 93.8 ± 2.2 % - 99.9 ± 1.9 % (n = 3). Compared to the traditional HLB cartridge and other materials in the LC-MS method, the resulting anti-fouling aptamer monolith provided a more advanced online analysis mode with higher sensitivity and better resolution of OA in biological samples. It might provide an attractive access to an online bionic recognition platform with LC-MS for efficient, anti-interference and sensitive specific detection of trace marine toxin OA in biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2025.465819DOI Listing

Publication Analysis

Top Keywords

monolithic column
8
antifouling aptamer
8
online specific
8
specific recognition
8
okadaic acid
8
marine toxin
8
monolith provided
8
biological samples
8
dual-mode monolithic
4
column zwitterion
4

Similar Publications

Three-dimensional printing (3DP) technology enables the flexible fabrication of integrated monolithic microextraction chips for high-throughput sample pretreatment. Meanwhile, the extraction performance of 3DP-based channels is largely limited by printer resolution and the commercially available printing materials. In this work, a 3DP array monolithic microextraction chip (AMC) was fabricated by integrating 26-array helical monolithic microextraction channels for sample pretreatment and 52-array gas valves for fluid control.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) are environmentally persistent, bioaccumulative, and toxic chemicals that contaminate global drinking water resources. Their ubiquity and potential impact on human health motivate large-scale remediation. Conventional materials used to remove PFASs during drinking water production are functionally inefficient or energetically expensive, motivating the discovery of new materials and technologies.

View Article and Find Full Text PDF

Streamlined Sample Cleanup: Small Molecule Fractionation and Extraction Via Low-Volume Polymer Monolithic Columns for In-Line Analysis.

J Chromatogr Sci

August 2025

Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55 2333CC Leiden, The Netherlands.

Polymer monoliths are stationary-phase materials for liquid chromatography and solid-phase extraction. Their porous structure, tuneability and simple synthesis enable tailoring to specific analysis requirements in analytical chemistry. Typically, polymer monoliths are used to separate larger biomolecules.

View Article and Find Full Text PDF

Magnetic field-enhanced in-tube solid-phase microextraction on-line hyphenated with chromatography for the simultaneous determination of heavy metal ions.

J Chromatogr A

October 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China. Electronic address:

Developing on-line hyphenated technique for the sensitive and accurate monitoring of heavy metal ions (HMs) is significant and interesting. In this connection, magnetic field-enhanced in-tube solid phase microextraction technique (ME/IT-SPME) was on-line hyphenated with HPLC system for the simultaneously quantitative analysis of Ni(II), Co(II), Cu(II), Hg(II), Cr(III) and Cr(VI) in various environmental samples. To enhance the ultraviolet sensitivity, the studied HMs were reacted with sodium diethyldithiocarbamate trihydrate (DDTC) to form HMs/DDTC complexes.

View Article and Find Full Text PDF

Driven by the need for smaller and more efficient continuous chromatographic systems, this study explores the feasibility of miniaturizing multi-column chromatography by integrating monolithic capillary columns directly into a 3D-printed valve rotor. First, monolith capillary ion-exchange columns were synthesized in PEEK capillaries with a diameter of 0.75 mm and a 3D-printed rotor system that can hold these capillary columns was developed.

View Article and Find Full Text PDF