Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organic solar cells now surpass 20% efficiency in small-area devices, but the use of chloroform as a solvent poses industrial scalability challenges because of its limited ability of uniform film formation and toxicity. High-boiling, non-halogenated solvents are being studied as alternatives, but their low solubility and slow evaporation complicate crystallization process. Here, the study introduces a seed crystal strategy by incorporating oligo (ethylene glycol)-modified small-molecule donors to optimize the nucleation and crystallization. The asymmetric BDTF-CA2O molecule, which combines the strong crystallinity of rodanine group and the low nucleation barrier of oligo (ethylene glycol) chain, significantly promotes the crystallization of the polymer donor PM6. Moreover, BDTF-CA2O effectively suppresses excessive phase separation, and optimizes vertical distribution, resulting in enhanced exciton extraction, balanced carrier transport, and reduced recombination losses. Small-area toluene-processed devices achieve a power conversion efficiency of 19.67%. In the realm of large-area organic solar cell modules, this strategy leads to a record active area efficiency of 17.68% and aperture area efficiency of 16.80% (certified at 16.26%), which is the highest reported for organic solar cell modules >10 cm to date. These achievements highlight the potential of the seed crystal strategy for large-scale production of efficient, large-area organic solar cell modules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202420308DOI Listing

Publication Analysis

Top Keywords

organic solar
20
solar cell
16
cell modules
16
seed crystal
12
crystal strategy
12
oligo ethylene
8
large-area organic
8
area efficiency
8
organic
5
solar
5

Similar Publications

Unveiling additive effects on molecular packing and charge transfer in organic solar cells: an AIMD and DFT study.

Phys Chem Chem Phys

September 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China.

Additive assisted strategies play a crucial role in optimizing the morphology and improving the performance of organic solar cells (OSCs), yet the molecular-level mechanisms remain unclear. Here, we employ molecular dynamics (AIMD) and density functional theory (DFT) to elucidate the influence of typical additives of 1,8-diiodooctane (DIO) and 3,5-dichlorobromobenzene (DCBB) on molecular packing, electronic structures, and charge transport. It can be observed that both additives can enhance the stacking properties of the donor and acceptor materials, yet they have different effects on the local electrostatic environment.

View Article and Find Full Text PDF

On Refining Exciton Dissociation and Charge Transport of Nonfullerene Organic Photovoltaics: from Star-Shaped Acceptors to Molecular Doping.

Adv Mater

September 2025

College of Smart Materials and Future Energy, and State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, 200438, China.

Nonfullerene acceptor-based organic solar cells have recently taken a milestone leap with power conversion efficiencies approaching 20%. A key to further boost the efficiencies up to the Shockley-Queisser limit rests upon attaining a delicate balance between exciton dissociation and charge transport. This perspective presents two seminal and reciprocal strategies developed by our group and others to reconcile the intricacy of charge carrier dynamics, spanning from intrinsic molecular structure design to extrinsic dopant exploitation.

View Article and Find Full Text PDF

Perovskite materials have revolutionized optoelectronics by virtue of their tunable bandgaps, exceptional optoelectronic properties, and structural flexibility. Notably, the state-of-the-art performance of perovskite solar cells has reached 27%, making perovskite materials a promising candidate for next-generation photovoltaic technology. Although numerous reviews regarding perovskite materials have been published, the existing reviews generally focus on individual material systems (e.

View Article and Find Full Text PDF

Hydrogen Radical Mediated Concerted Electron-Proton Transfer in 1D Sulfone-based Covalent Organic Framework for Boosting Photosynthesis of HO.

Angew Chem Int Ed Engl

September 2025

College of Smart Materials and Future Energy, Fudan University, Songhu Road 2005, Shanghai, 200438, P.R. China.

Solar-driven photocatalytic oxygen reduction reaction using covalent organic frameworks (COFs) offers a promising approach for sustainable hydrogen peroxide (HO) production. Despite their advantages, the reported COFs-based photocatalysts suffer insufficient photocatalytic HO efficiency due to the mismatched electron-proton dynamics. Herein, we report three one-dimensional (1D) COF photocatalysts for efficient HO production via the hydrogen radical (H•) mediated concerted electron-proton transfer (CEPT) process.

View Article and Find Full Text PDF

The photovoltaic performance of CuZnSn(S,Se) is limited by open-circuit voltage losses (ΔV) in the radiative (ΔV) and non-radiative (ΔV) limits, due to sub-bandgap absorption and deep defects, respectively. Recently, several devices with power conversion efficiencies approaching 15% have been reported, prompting renewed interest in the possibility that the key performance-limiting factors have been addressed. In this work, we analyze the sources of ΔV in these devices and offer directions for future research.

View Article and Find Full Text PDF