98%
921
2 minutes
20
Recently developed high temporal resolution functional (18F)-fluorodeoxyglucose positron emission tomography (fPET) offers promise as a method for indexing the dynamic metabolic state of the brain by directly measuring a time series of metabolism at the post-synaptic neuron. This is distinct from functional magnetic resonance imaging (fMRI) that reflects a combination of metabolic, haemodynamic and vascular components of neuronal activity. The value of using fPET to understand healthy brain ageing and cognition over fMRI is currently unclear. Here, we use simultaneous fPET/fMRI to compare metabolic and functional connectivity and test their predictive ability for ageing and cognition. Whole-brain fPET connectomes showed moderate topological similarities to fMRI connectomes in a cross-sectional comparison of 40 younger (mean age 27.9 years; range 20-42) and 46 older (mean 75.8; 60-89) adults. There were more age-related within- and between-network connectivity and graph metric differences in fPET than fMRI. fPET was also associated with performance in more cognitive domains than fMRI. These results suggest that ageing is associated with a reconfiguration of metabolic connectivity that differs from haemodynamic alterations. We conclude that metabolic connectivity has greater predictive utility for age and cognition than functional connectivity and that measuring glucodynamic changes has promise as a biomarker for age-related cognitive decline.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851278 | PMC |
http://dx.doi.org/10.1093/braincomms/fcaf075 | DOI Listing |
Circ Genom Precis Med
September 2025
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China (J.Z., S.R., L.C., M.C., F.T., B.A., Y.Y., H.L.).
Background: Previous studies have suggested that the associations between ambient air pollution and atherosclerotic cardiovascular diseases (ASCVD) differ by genotype. A genome-wide approach provides a more comprehensive understanding of this relationship on a genomic scale.
Methods: Using data from ≈300 000 UK Biobank participants, we conducted a genome-wide interaction analysis on 10 745 802 variants.
Heart Lung Circ
September 2025
Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia. Electronic address:
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a reach extending beyond the liver to include other metabolic syndrome-related disorders. Cardiovascular disease and type 2 diabetes mellitus are recognised non-communicable disorders and often downstream complications of MASLD and share similar risk factors. However, MASLD has not been afforded parity alongside other cardiometabolic non-communicable disorders, including the cardiovascular-kidney-metabolic (CKM) syndrome.
View Article and Find Full Text PDFTrends Mol Med
September 2025
Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Ferroptosis, a regulated cell death pathway driven by iron-catalyzed lipid peroxidation, has recently been implicated as a major cause of hepatic injury in metabolic dysfunction-associated fatty liver disease (MAFLD). This review highlights how the identification of hyperoxidized peroxiredoxin 3 (PRDX3) as a ferroptosis-specific marker has led to the discovery that ferroptosis contributes to liver injury in MAFLD, and summarizes other emerging evidence connecting ferroptosis to MAFLD pathogenesis. These new findings suggest that dietary fat composition and genetic variants such as PNPLA3(I148M) may affect the progression of MAFLD by regulating cellular sensitivity to ferroptosis.
View Article and Find Full Text PDFBrain Res Bull
September 2025
Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA; Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA.
We propose a Biophysically Restrained Analog Integrated Neural Network (BRAINN), an analog electrical network that models the dynamics of brain function. The network interconnects analog electrical circuits that simulate two tightly coupled brain processes: (1) propagation of an action potential, and (2) regional cerebral blood flow in response to the metabolic demands of signal propagation. These two processes are modeled by two branches of an electrical circuit comprising a resistor, a capacitor, and an inductor.
View Article and Find Full Text PDFNeuro Endocrinol Lett
September 2025
Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
Background: Major depressive disorder (MDD) is associated with neuro-immune - metabolic - oxidative (NIMETOX) pathways.
Aims: To examine the connections among NIMETOX pathways in outpatient MDD (OMDD) with and without metabolic syndrome (MetS); and to determine the prevalence of NIMETOX aberrations in a cohort of OMDD patients.
Methods: We included 67 healthy controls and 66 OMDD patients and we assessed various NIMETOX pathways.