98%
921
2 minutes
20
As a kind of important functional device, terahertz metamaterial absorbers (TMA) have been focused on by many researchers for their capacity to absorb electromagnetic waves and wide application fields. In this work, we designed a terahertz metamaterial absorber with narrow-band absorption for refractive index sensing, which consisted of a circular metal ring resonator and a square metal ring resonator. The simulation results show that the absorptivity of the proposed TMA reached over 68.8% and 93.27% at 1.926 and 4.413 THz, respectively. Moreover, the absorption mechanism was studied through the electromagnetic field energy distribution, and the influence of structural parameters on absorption performance was exhibited. In refractive index sensing, a high sensitivity (S) of 2.537 THz/RIU (refractive index unit, RIU) was achieved by utilizing the coupling of ring resonators. The maximal quality factor (Q-factor) and figure of merit (FOM) of the TMA were 234.73 and 147.67 RIU, respectively. Additionally, we established an RLC equivalent circuit model (ECM) for the TMA, and we further illustrated the performance of the TMA in refractive index sensing through fitting the sensitivity based on the ECM to the sensitivity of the TMA. Our study exhibits the considerable potential application for the field of terahertz sensing, and the ECM for refractive index sensing will be helpful for continual investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857535 | PMC |
http://dx.doi.org/10.3390/ma18040765 | DOI Listing |
Nat Photonics
June 2025
Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Metasurfaces provide an ideal platform for optical sensing because they produce strong light-field confinement and enhancement over extended regions that allow us to identify deep-subwavelength layers of organic and inorganic molecules. However, the requirement of using external light sources involves bulky equipment that hinders point-of-care applications. Here we introduce a plasmonic sensor with an embedded source of light provided by quantum tunnel junctions.
View Article and Find Full Text PDFNanoscale
September 2025
Université Paris Cité, Laboratoire ITODYS, CNRS, F-75006 Paris, France.
Aluminum (Al) is a cost-effective alternative to noble metals for plasmonics, particularly in the ultraviolet (UV) and visible regions. However, in the near-infrared (NIR) region, its performance is hindered by interband transitions (IBTs) at around 825 nm, leading to increased optical losses and broad resonances. Surface lattice resonances (SLRs) offer a promising solution by enhancing the plasmonic quality factor (-factor) through coherent coupling of localized surface plasmon (LSP) modes with Rayleigh anomalies.
View Article and Find Full Text PDFDalton Trans
September 2025
School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, China.
In this paper, we design and study a temperature-controlled switchable terahertz perfect absorber based on vanadium dioxide (VO), which shows excellent multi-band performance, high sensitivity and intelligent thermal management. The device consists of four layers in a metal-dielectric composite structure, which are a metal reflection layer, silicon dielectric layer, VO phase change layer and top metal pattern layer from bottom to top. The simulation results show that when VO is in the low-temperature insulation state, the absorption rate of the device is as high as 99.
View Article and Find Full Text PDFACS Appl Nano Mater
August 2025
Department of Physics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
Accurate and noninvasive detection of cancer cells is critical for advancing early stage cancer diagnostics and monitoring tumor progression. While manual enumeration methods, such as hemocytometry, remain in use, they suffer from limited sensitivity and scalability. In this article, we report the first feasibility study demonstrating a graphene oxide (GO)-functionalized long-period fiber grating (LPG) sensor for the label-free detection of MCF-7 human breast cancer cell density via secreted cellular byproducts.
View Article and Find Full Text PDFJ Biomed Opt
September 2025
Guangdong University of Technology, Institute of Advanced Photonics Technology, School of Information Engineering, Guangzhou, China.
Significance: Accurate cell classification is essential in disease diagnosis and drug screening. Three-dimensional (3D) voxel models derived from holographic tomography effectively capture the internal structural features of cells, enhancing classification accuracy. However, their high dimensionality leads to significant increases in data volume, computational complexity, processing time, and hardware costs, which limit their practical applicability.
View Article and Find Full Text PDF