Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated remarkable efficacy in treating non-small cell lung cancer (NSCLC), but acquired resistance greatly reduces efficacy and poses a significant challenge to patients. While numerous studies have investigated the mechanisms underlying EGFR-TKI resistance, its complexity and diversity make the existing understanding still incomplete. Traditional approaches frequently struggle to adequately reveal the process of drug resistance development through mean value analysis at the overall cellular level. In recent years, the rapid development of single-cell RNA sequencing technology has introduced a transformative method for analyzing gene expression changes within tumor cells at a single-cell resolution. It not only deepens our understanding of the tumor microenvironment and cellular heterogeneity associated with EGFR-TKI resistance but also identifies potential biomarkers of resistance. In this review, we highlight the critical role of single-cell RNA sequencing in lung cancer research, with a particular focus on its application to exploring the mechanisms of EGFR-TKI-acquired resistance in NSCLC. We emphasize its potential for elucidating the complexity of drug resistance mechanism and its promise in informing more precise and personalized treatment strategies. Ultimately, this approach aims to advance NSCLC treatment toward a new era of precision medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855476PMC
http://dx.doi.org/10.3390/ijms26041483DOI Listing

Publication Analysis

Top Keywords

single-cell rna
12
rna sequencing
12
lung cancer
12
resistance
8
acquired resistance
8
non-small cell
8
cell lung
8
egfr-tki resistance
8
drug resistance
8
single-cell
4

Similar Publications

Objectives: To identify immunosuppressive neutrophil subsets in patients with prostate cancer (PCa) and construct a risk prediction model for prognosis and immunotherapy response of the patients based on these neutrophil subsets.

Methods: Single-cell and transcriptome data from PCa patients were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Neutrophil subsets in PCa were identified through unsupervised clustering, and their biological functions and effects on immune regulation were analyzed by functional enrichment, cell interaction, and pseudo-time series analyses.

View Article and Find Full Text PDF

Single-Cell RNA Sequencing Reveals Potential Mechanism of RUNX3 Reshaping Tumor Microenvironment in Non-small-cell Lung Cancer.

Ann Surg Oncol

September 2025

Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.

Background: RUNX3 acts as a tumor suppressor gene in non-small-cell lung cancer (NSCLC), yet its specific biological mechanism is still unclear. This study aimed to uncover tumor microenvironment (TME) changes in NSCLC with varying RUNX3 expression statuses through single-cell RNA sequencing.

Patients And Methods: In total, seven patients with NSCLC with detailed pathological data were involved, with three both paracancerous and cancerous tissue samples.

View Article and Find Full Text PDF

Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.

View Article and Find Full Text PDF

Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species.

View Article and Find Full Text PDF

S1P/S1PR4 Promotes the Differentiation of CD8 tissue-resident memory T Cells Aggravating Bile Duct Injury in Biliary Atresia.

J Hepatol

September 2025

Department of Neonatal Surgery, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China. Electronic address:

Background And Aims: Biliary atresia (BA) is a severe neonatal cholangiopathy characterized by progressive inflammation and fibrosis. We aimed to systematically investigate BA pathology using integrated multi-omics.

Methods: Multi-omics integration of BA and control livers revealed sphingolipid dysregulation.

View Article and Find Full Text PDF