A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Synchronously Delivering Melittin and Evoking Ferroptosis via Tumor Microenvironment-Triggered Self-Destructive Metal-Organic Frameworks to Boost Cancer Immunotherapy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The primary goal of treating malignant tumors is to efficiently eliminate the primary tumor and prevent metastasis and recurrence. Unfortunately, the immunosuppressive tumor microenvironment (TME) is a significant obstacle to effective oncotherapy. Herein, a therapeutic strategy based on melittin (MLT) encapsulated in hyaluronic acid-modified metal-organic frameworks (MOFs) is pioneered, focusing on the safe delivery and TME-responsive release of MLT to reshaping the immunosuppressive TME and simultaneously activating the immune system to eradicate cancerous cells. Iron-based MOFs respond to glutathione and pH, degrade within a moderately acidic TME, and achieve tumor-specific release of MLT. Additionally, the iron-mediated Fenton reaction produces reactive oxygen species that augment oxidative stress, ultimately leading to tumor-specific ferroptosis, whereas MLT-induced membrane disruption promotes immunogenic cell death to activate the immune system. In combination with the immune checkpoint inhibitor anti-PD-L1, this nanodrug elicits potent antitumor immune responses, facilitating the infiltration of effector T cells and enhancing systemic antitumor T cell immunity to suppress both primary and distant tumors. This study demonstrates the tremendous potential of nanoscale self-destructive MOFs for the targeted transport and controlled release of MLT and reveals the promoting effect of combined MLT and ferroptosis delivery on cancer immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202500003DOI Listing

Publication Analysis

Top Keywords

release mlt
12
metal-organic frameworks
8
cancer immunotherapy
8
immune system
8
mlt
5
synchronously delivering
4
delivering melittin
4
melittin evoking
4
evoking ferroptosis
4
ferroptosis tumor
4

Similar Publications