98%
921
2 minutes
20
Salt stress limits plant growth and agricultural productivity and plants have evolved suitable mechanisms to adapt to salinity environments. It is important to characterize genes involved in plant salt tolerance, which will advance our understanding of mechanisms mediating salt tolerance and help researchers design ways to improve crop performances under high salinity environments. Here, we reported a CYP450 family member, CYP75B4, improves salt tolerance of rice seedlings by inducing flavonoid tricin and cell wall lignin accumulation. The CYP75B4 is highly expressed in tissues rich in cell walls and induced by salt treatment. Subcellular localization analysis revealed that CYP75B4 is localized in the endoplasmic reticulum (ER). The CYP75B4 overexpressing (CYP75B4-OE) lines showed significant enhancement in stem mechanical strength, whereas the cyp75b4 null mutants displayed weaker stems, as compared to the wild-type. Notably, the cyp75b4 and CYP75B4-OE lines showed decreased and improved, respectively, salt tolerance performances in terms of survival rate, ROS accumulation, and Na/ K homeostasis. Additionally, the cyp75b4 mutants had a decreased tricin level, whereas CYP75B4-OE lines showed an increased tricin content, under both control or salinity conditions. Furthermore, treating the cyp75b4 mutants with tricin partly resorted salt stress tolerance to the wild-type levels, indicating a role of CYP75B4-mediated tricin production in rice response to salinity. Consistently, another tricin-deficient mutant cyp93g1 also displayed salt sensitivity and the tricin application could partly restore its salt-sensitive phenotypes. Moreover, the CYP75B4 significantly promotes lignin deposition in cell walls of mature stems and seedlings under salinity conditions, which probably contributes to the enhanced stem mechanical strength and improved salt tolerance in CYP75B4-OE plants. Our findings reveal a novel function of CYP75B4 in rice salt tolerance and lodging resistance by inducing tricin accumulation and lignin deposition in cell walls.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846809 | PMC |
http://dx.doi.org/10.1186/s12284-025-00764-w | DOI Listing |
Funct Integr Genomics
September 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China.
Introduction: Transcription factors (TFs) are essential regulators of gene expression, orchestrating plant growth, development, and responses to environmental stress. , a halophytic species renowned for its exceptional salt resistance, provides an ideal model for investigating the regulatory mechanisms underlying salt tolerance.
Methods: Here, we present a comprehensive genome-wide identification and characterization of TFs in .
Open Life Sci
August 2025
Department of Biology, Thai Nguyen University of Education, Thai Nguyen 24000, Vietnam.
DREB7 in (L) is a novel trans-acting transcription factor (TF) that binds to the -acting sequences of promoters to activate the expression of downstream genes in response to abiotic factors. This study presents the experimental results and analyzes the relationship between the overexpression of the and , as well as the proline content, in transgenic soybean lines. The results of qRT-PCR analysis of four TG1 transgenic soybean lines (TG1-2, TG1-5, TG1-7, and TG1-10) showed that the gene had significantly higher transcriptional expression under untreated and salt stress conditions.
View Article and Find Full Text PDFJ Biomol Struct Dyn
September 2025
Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
A thermostable paraoxonase (S3wahi-PON) from sp. strain S3wahi was recently characterised and shown to possess stability across a broad temperature range. This study expands upon the initial biochemical characterisation of S3wahi-PON by investigating the structural determinants and conformational adaptability that contribute to its thermostability, using an integrated approach that combines biophysical techniques and molecular dynamics (MD) simulations across a temperature range of 10 °C to 90 °C.
View Article and Find Full Text PDFPlant Cell Environ
October 2025
Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.