Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

-The interplay of key innovation and ecological opportunity is commonly recognized to be the catalyst for rapid radiation. Underground storage organs (USOs), as a vital ecological trait, are advantageous for the adaptation of plants to extreme environments, but receive less attention compared to aboveground organs. Repeated evolution of various USOs has occurred across the plant tree of life. However, whether repeated occurrences of a USO in different clades of a group can promote its replicated radiations in combination with the invasion of similar environments remains poorly known. Corydalis is a megadiverse genus in Papaveraceae and exhibits remarkable variations in USO morphology and biome occupancy. Here, we first generated a robust phylogeny for Corydalis with wide taxonomic and genomic coverage based on plastome and nuclear ribosomal DNA sequence data. By dating the branching events, reconstructing ancestral ranges, evaluating diversification dynamics, and inferring evolutionary patterns of USOs and biomes and their correlations, we then tested whether the interplay of USO evolution and biome shifts has driven rapid diversification of some Corydalis lineages. Our results indicate that Corydalis began to diversify in the Qinghai-Tibet Plateau (QTP) at ca. 41 Ma, and 88% of dispersals happened through forests, suggesting that forests served as important dispersal corridors for range expansion of the genus. The storage root has originated independently at least 6 times in Corydalis since the Miocene, and its acquisition could have operated as a key innovation toward the adaptation to the alpine biome in the QTP. Repeated evolution of this game-changing trait and invasions of alpine biome, in combination with geoclimatic changes, could have jointly driven independent radiations of the 2 clades of Corydalis in the QTP at ca. 6 Ma. Our study provides new insights into the joint contribution of USO repeated evolution and biome shifts to replicated radiations, hence increasing our ability to predict evolutionary trajectories in plants facing similar environmental pressures.

Download full-text PDF

Source
http://dx.doi.org/10.1093/sysbio/syaf014DOI Listing

Publication Analysis

Top Keywords

repeated evolution
16
alpine biome
12
replicated radiations
12
storage root
8
invasions alpine
8
qinghai-tibet plateau
8
key innovation
8
evolution biome
8
biome shifts
8
corydalis
7

Similar Publications

Background: Interprofessional Education (IPE) is widely recognized as essential for fostering collaborative healthcare practices and improving patient outcomes. Despite its acknowledged importance, there remains a notable scarcity of longitudinal research assessing medical students' readiness for IPE across distinct educational stages, particularly within diverse global contexts like Brazil.

Aim: This study sought to address this gap by longitudinally mapping and analyzing the evolution of medical students' readiness for interprofessional learning throughout their academic training at a Brazilian university.

View Article and Find Full Text PDF

Millions of reverse transcription-polymerase chain reaction (RT-PCR) tests have been performed worldwide during the SARS-CoV-2 pandemic, using various protocols. This study evaluates the duration of SARS-CoV-2 RNA detectability by RT-PCR at body temperature and analyzes changes in cycle threshold (Ct) values over time. Positive nasopharyngeal swabs for SARS-CoV-2 RT-PCR ( = 120) with different Ct values were collected from Hospital Universitario 12 de Octubre (Madrid, Spain, 2020).

View Article and Find Full Text PDF

Understanding the rate and nature of adaptation is crucial for managing biodiversity across our changing landscapes. This perspective synthesizes insights from resistance evolution - a case of rapid, repeated adaptation to extreme human-mediated selection - to reveal how adaptive genetic architectures determine and feedback with evolutionary dynamics. Recent population genomic and quantitative genetic approaches have demonstrated that the extent of genetic parallelism and reliance on de novo vs standing genetic variation can vary with the complexity of genetic architectures.

View Article and Find Full Text PDF

Bovine besnoitiosis is a parasitic disease caused by the parasite . It was classified as an emerging disease by EFSA in 2010, due to the appearance of new cases in several European countries. The clinical presentation can be acute or chronic, but most animals remain asymptomatic, acting as reservoirs.

View Article and Find Full Text PDF

Unexpected Diagnosis in a Cutaneous Tumoral Lesion: Primary Cutaneous Leg-Type B-Cell Lymphoma.

Cureus

August 2025

Dermatology, Centro Medico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, MEX.

Primary cutaneous diffuse large B-cell lymphoma, leg type (PCDLBCL-LT), is an uncommon and aggressive subtype of cutaneous B-cell lymphoma, typically affecting elderly women and predominantly involving the lower extremities. Its diagnosis relies on immunohistochemical profiling and clinical presentation. We report a rare case of a 45-year-old male presenting initially with scalp and supraciliary plaques.

View Article and Find Full Text PDF