98%
921
2 minutes
20
Poly(vinylidene fluoride) (PVDF) is promising for polymer solid-state electrolytes (PSEs) but faces challenges such as low ionic conductivity, uneven strain distribution, and poor lithium (Li) dendrite inhibition. Herein, an effective strategy is proposed to enhance PVDF-based PSEs by incorporating a fast ion conductor LiZr(PO) (LZP) with a negative thermal expansion property and a NASICON-type structure, and the effects are investigated using multifarious methods. The added LZP not only enhances the mobility of the PVDF chain and the concentration of free Li, but regulates heat release and volume expansion of PSEs during cycles, thereby protecting electrode morphology and structure, as well as improving the interface between the electrode and electrolyte. Compared to the pristine PVDF-based PSEs, the ionic conductivity is increased to 3.3 × 10 S cm, and the stability is augmented by adding 10 wt % LZP. At 25 °C and 0.5 C, the values of the discharge capacity retention of the Li|PVDF-10 wt %LZP|LiFePO and Li|PVDF-10 wt %LZP|LiNiCoMnO full cells without liquid electrolytes are improved from 61.4 and 53.4% to 90.4 and 87.7% after 300 and 200 cycles, respectively. The enhancement mechanisms are proposed based on the interactions of heat, deformation, interface, and ion transfer. It paves a unique way to develop solid-state electrolytes by simultaneously adjusting the structure, heat, and mechanics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c22175 | DOI Listing |
Small Methods
September 2025
Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.
As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.
View Article and Find Full Text PDFSmall
September 2025
School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China.
Covalent organic frameworks (COFs) exhibit outstanding structural tunability, clearly defined ion pathways, and remarkable thermal/chemical stabilities, rendering them highly promising candidates for applications in solid-state electrolytes. However, it remains a challenge to develop a versatile method to incorporate both ionic groups and electron-withdrawing units into a single framework for effectively improving the lithium-ion conductivity. Herein, a series of novel [3+3] defective COFs is successfully synthesized featuring active amine/aldehyde anchoring sites for subsequent post-modification, and regulates the ion conductivity through elaborately tuning the anionic/cationic groups and weak/strong electron-withdrawing units.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
Sulfide solid electrolytes (SEs) exhibit excellent ionic conductivity and good mechanical properties, but their poor air stability and solid-solid contact performance seriously hinder the wide application of sulfide all-solid-state batteries (ASSBs). Herein, this paper reviews the history and the major breakthroughs in the development of sulfide SEs. The theories of hard-soft-acid-base theory and glass structure theory, as well as several strategies to improve the chemical stability of sulfide SEs, are discussed emphatically.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Physics, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India.
We report the performance of solid-state ceramic supercapacitors (SSCs) based on a novel composite electrolyte comprising aluminum-doped lithium lanthanum titanate perovskite, LiLaTiAlO (Al-doped LLTO), and the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM BF). Rietveld refinement of X-ray diffraction data confirms the preservation of the tetragonal perovskite phase after Al substitution, indicating structural stability of the host lattice. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy further corroborate the successful incorporation of Al without forming secondary phases.
View Article and Find Full Text PDF