Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phacoemulsification with intraocular lens (IOL) implantation is a widely used effective treatment for cataracts. However, the surgical outcome relies heavily on precise operations with marked eye location and orientation, which ideally require a high-precision navigation system for complete guidance of surgical procedure. However, both research and current commercial surgical microscopes still face substantial challenges in handling various complex clinical scenarios. Here we propose a neural network-powered surgical microscopic system that can benefit from big data to address the unmet clinical need. In this system, we designed an end-to-end navigation network for real-time positioning and alignment of IOL and then built a computer-assisted surgical microscope with a complete imaging and display platform integrating the control software and algorithms for surgical planning and navigation. The network used an attention-based encoder-decoder architecture with an edge padding mechanism and an MLP layer for eye center localization, and combined siamese network, correlation filter, and spatial transformation network to track eye rotation. Using computer-aided annotation, we collected and labeled 100 clinical surgery videos from 100 patients, and proposed a data augmentation method to enhance the diversity of training. We further evaluated the navigation performance of the microscopic system on a human eye model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828452PMC
http://dx.doi.org/10.1364/BOE.542436DOI Listing

Publication Analysis

Top Keywords

microscopic system
12
navigation network
8
surgical
6
system
5
neural network
4
network powered
4
powered microscopic
4
system cataract
4
cataract surgery
4
surgery phacoemulsification
4

Similar Publications

Introduction: von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary disorder characterized by the development of tumor-like lesions in multiple organs. While central nervous system hemangioblastomas, pancreatic neuroendocrine tumors, and pancreatic cysts are commonly associated with VHL disease, there have been few reported cases of pancreatic hemangioblastoma in patients with VHL disease.

Case Presentation: A male patient in his 30s had been diagnosed with VHL disease and had been followed for cerebellar and spinal hemangioblastomas, and renal cell carcinoma, for which he had undergone several tumor resections, radiation therapy, and a ventriculoperitoneal shunt.

View Article and Find Full Text PDF

Enhancing hydrophobic bioactives' bioaccessibility remains challenging in functional foods due to instability and insufficient controlled-release ability in conventional protein-polysaccharide carriers. We pioneer a new interaction model by covalently grafting corn stover cellulose nanofibers (CNF) with Zein using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), creating conjugates with gradient grafting degrees (CNF/Zein 0.5, CNF/Zein 1, and CNF/Zein 2).

View Article and Find Full Text PDF

Despite periods of permanent darkness and extensive ice coverage in polar environments, photosynthetic ice diatoms display a remarkable capability of living inside the ice matrix. How these organisms navigate such hostile conditions with limited light and extreme cold remains unknown. Using a custom subzero temperature microscope during an Arctic expedition, we present the finding of motility at record-low temperatures in a Eukaryotic cell.

View Article and Find Full Text PDF

Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.

Discov Nano

September 2025

Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.

Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.

View Article and Find Full Text PDF

In vitro assessment of the inhibitory effect of antiplatelet drugs on platelet aggregation is frequently employed to guide personalized antiplatelet therapy in clinical practice. However, existing methods for detecting platelet aggregation rely heavily on high concentrations of exogenous agonists, which may obscure part of the inhibitory effect of antiplatelet drugs and lead to an underestimation of their effects. This study validates a novel analytical strategy for evaluating the effects of antiplatelet drugs by quantifying the microscopic three-dimensional morphological parameters of platelet aggregates formed through spontaneous aggregation on a glass surface.

View Article and Find Full Text PDF