98%
921
2 minutes
20
Additive manufacturing of metallic materials holds the potential to revolutionize the fabrication of functional devices unattainable via traditional methods. Despite recent advancements, printing metallic materials typically requires thermal processing at elevated temperatures to form dense structures with desired properties, which presents a major challenge for direct printing and integration with temperature-sensitive materials. Herein, a unique co-jet printing (CJP) method is reported integrating an aerosol jet and a non-thermal, atmospheric pressure plasma jet to enable concurrent aerosol deposition of metal nanoparticle inks and in situ sintering at ambient temperature. A machine learning algorithm is integrated with the CJP to perform real-time defect detection and autonomous correction, enhancing the yield of printed films with high electrical conductivity from 44% to 94%. Concurrent printing and sintering eliminate the need for post-printing processing, reducing the overall manufacturing time by multiple folds depending on product size. CJP enables direct printing of functional devices on a variety of temperature-sensitive materials including biological materials. Direct printing of hydration sensors on living plant leaves is demonstrated for long-duration monitoring of hydration level in the plant. The versatile CJP method opens tremendous opportunities to harmoniously integrate abiotic and biotic materials for emerging applications in wearable/implantable devices and biohybrid systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922012 | PMC |
http://dx.doi.org/10.1002/smll.202409751 | DOI Listing |
Nanomicro Lett
September 2025
Department of Mechanical, Aerospace & Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.
View Article and Find Full Text PDFLangmuir
September 2025
College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China.
Sodium-ion batteries are promising candidates for large-scale energy storage due to their low cost and resource abundance. However, their cathode materials suffer from poor conductivity and limited cycling stability. Here, we report a Prussian blue (PB)-based cathode hybridized with carboxyl-functionalized carbon nanotubes (CNTs) via a glutamic acid-assisted in situ coordination route.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.
Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
The Third Department of Orthopedic Surgery, Fuxin Mining General Hospital of Liaoning Health Industry Group, Liaoning, China.
Tendon/ligament (T/L) injuries sustained during motion are highly prevalent and severely impact athletes' careers and quality of life. Current treatments, including autografts, allografts, and synthetic ligaments, have limitations such as donor site morbidity, immune rejection, and biomechanical mismatch, especially under dynamic loading conditions encountered in motion. 3D bioprinting offers a revolutionary approach for constructing patient-specific T/L grafts.
View Article and Find Full Text PDFIndian J Psychiatry
August 2025
Department of Clinical Psychology, Institute of Human Behaviour and Allied Sciences, Delhi, India.
Background: Affiliate stigma (AS) is self-stigma in caregivers, having three salient components: affective, behavioral, and cognitive. High caregiver AS causes concealment of mental illness and has negative consequences. Appropriate intervention for AS can offset such consequences.
View Article and Find Full Text PDF