Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Herein, we constructed an integrated system for L-tryptophan (L-Trp) detection by assembling an electrochemical sensor and a microfluidic platform. Amongst, the sensor was printed using conductive polymer filaments and then chemically activated to expose porous nanostructure on the surface. A calibration curve was established between 31.26-1000.00 μmol/L and the limit of detection (LOD) was 10.41 μmol/L. The sensor exhibited satisfactory reproducibility, selectivity and stability. The recovery ranged between 99.06-102.09 % with relative standard deviations less than 5.21 %. The results show that L-Trp undergoes a two-proton, two-electron transfer in the anodic reaction. Once integrated into a printed microfluidic module from photosensitive resin, the sensor showed a wider detection range (15.00-70.00, 100-4000 μmol/L) with a lower LOD (5.00 μmol/L), which may be due to faster mass transfer in microfluidics. The consistency and validity were affirmed with ultra-visible spectrophotometer and HPLC. The integrated system allows point-of-testing owing to its small size, portability and low cost.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2025.143331DOI Listing

Publication Analysis

Top Keywords

electrochemical sensor
8
sensor microfluidic
8
integrated system
8
sensor
5
printed electrochemical
4
microfluidic system
4
detection
4
system detection
4
detection l-tryptophan
4
l-tryptophan degradable
4

Similar Publications

Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring.

Nanomicro Lett

September 2025

Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.

Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.

View Article and Find Full Text PDF

MXene/PANI/SnO electrochemical sensor for the determination of 4-aminophenol.

Mikrochim Acta

September 2025

Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Northwest Normal University, Lanzhou, 730070, China.

An electrochemical sensor based on MXene/PANI/SnO nanomaterials was developed for the detection of 4-aminophenol (4-AP). In situ oxidative growth of PANI on the MXene surface effectively hindered the stacking of the lamellae and increased the specific surface area of the composites. Further complexation of tin dioxide with swelling properties of the structure provided adsorption and catalytic sites for 4-AP.

View Article and Find Full Text PDF

With the continuous development of flexible sensors and flexible energy storage devices, gel materials with good flexibility, toughness, and tunable properties have attracted wide attention. Deep eutectic solvents (DES) have an obvious advantage of thermal and chemical stability over water. Therefore, eutectogels can effectively solve the problem of insufficient stability of traditional hydrogels.

View Article and Find Full Text PDF

A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.

View Article and Find Full Text PDF

Wearable sensors for animal health and wellness monitoring.

Prog Mol Biol Transl Sci

September 2025

Nanobiology and Nanozymology Research Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India. Electronic address:

Biosensors are rapidly emerging as a key tool in animal health management, therefore, gaining a significant recognition in the global market. Wearable sensors, integrated with advanced biosensing technologies, provide highly specialized devices for measuring both individual and multiple physiological parameters of animals, as well as monitoring their environment. These sensors are not only precise and sensitive but also reliable, user-friendly, and capable of accelerating the monitoring process.

View Article and Find Full Text PDF