98%
921
2 minutes
20
Addressing the problem of inadequate environmental detection in the process of optimizing search for unmanned surface vehicles (USVs) by a heuristic algorithm, this paper proposes a comprehensive visual perception method that combines a lightweight convolutional neural network (CNN) with the USV's real-time heading angle. This method employs a multi-feature input CNN with residual learning blocks, which takes both the current local environmental images and heading angle features as inputs to identify the complexity of the local environment with higher accuracy and a smaller load size. Meanwhile, human expertise is incorporated to classify labels through a majority voting system, thereby making the model's perceptual classification more intuitive and allowing it to possess a human-like comprehensive perception ability compared to systems with classification methods with several parameters. Subsequently, this identification result can be used as feedback for the heuristic algorithm to optimize and plan the USV's path. The simulation results indicate that the developed model achieves an 80% reduction in model size while maintaining an accuracy exceeding 90%. The proposed method significantly improves the environment recognition capability of the heuristic algorithm, enhances optimization search efficiency, and increases the overall performance of path planning by approximately 21%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819720 | PMC |
http://dx.doi.org/10.3390/s25030980 | DOI Listing |
BMC Ecol Evol
September 2025
Lehrstuhl für Zoologie, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 4, Freising, 85354, Germany.
Accurate three-dimensional localisation of ultrasonic bat calls is essential for advancing behavioural and ecological research. I present a comprehensive, open-source simulation framework-Array WAH-for designing, evaluating, and optimising microphone arrays tailored to bioacoustic tracking. The tool incorporates biologically realistic signal generation, frequency-dependent propagation, and advanced Time Difference of Arrival (TDoA) localisation algorithms, enabling precise quantification of both positional and angular accuracy.
View Article and Find Full Text PDFPLoS One
September 2025
Information Technologies and Programming Faculty, ITMO University, Saint Petersburg, Russia.
In the paper we consider the well-known Influence Maximization (IM) and Target Set Selection (TSS) problems for Boolean networks under Deterministic Linear Threshold Model (DLTM). The main novelty of our paper is that we state these problems in the context of pseudo-Boolean optimization and solve them using evolutionary algorithms in combination with the known greedy heuristic. We also propose a new variant of (1 + 1)-Evolutionary Algorithm, which is designed to optimize a fitness function on the subset of the Boolean hypercube comprised of vectors of a fixed Hamming weight.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Engineering Research Center of Edibleand Medicinal Fungi, Ministry of Education, Jilin Agricultural University Changchun, Changchun, China.
Traditional path planning algorithms often face problems such as local optimum traps and low monitoring efficiency in agricultural UAV operations, making it difficult to meet the operational requirements of complex environments in modern precision agriculture. Therefore, there is an urgent need to develop an intelligent path planning algorithm. To address this issue, this study proposes an improved Informed-RRT* path planning algorithm guided by domain-partitioned A* algorithm.
View Article and Find Full Text PDFQuantum Mach Intell
September 2025
USRA Research Institute for Advanced Computer Science (RIACS), Moffett Field, CA USA.
We discuss guidelines for evaluating the performance of parameterized stochastic solvers for optimization problems, with particular attention to systems that employ novel hardware, such as digital quantum processors running variational algorithms, analog processors performing quantum annealing, or coherent Ising machines. We illustrate through an example a benchmarking procedure grounded in the statistical analysis of the expectation of a given performance metric measured in a test environment. In particular, we discuss the necessity and cost of setting parameters that affect the algorithm's performance.
View Article and Find Full Text PDFGenetics
September 2025
Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom.
Recent advances in methods to infer and analyse ancestral recombination graphs (ARGs) are providing powerful new insights in evolutionary biology and beyond. Existing inference approaches tend to be designed for use with fully-phased datasets, and some rely on model assumptions about demography and recombination rate. Here I describe a simple model-free approach for genealogical inference along the genome from unphased genotype data called Sequential Tree Inference by Collecting Compatible Sites (sticcs).
View Article and Find Full Text PDF