Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intracellular pathogens represent a challenge for therapy because the antibiotics used need to diffuse into the cytoplasm to target the pathogens. The situation is more complicated in the mycobacteria family because members of this family infect and multiply within macrophages, the cells responsible for clearing microorganisms in the body. In addition, mycobacteria members are enclosed inside pathogen-containing vesicles or phagosomes. The treatments of these pathogens are aggravated when these pathogens acquire resistance to antibiotic molecules. As a result, new antimicrobial alternatives are needed. Niosomes are vesicles composed of cholesterol and nonionic surfactants that can be used for antibiotic encapsulation and delivery. The current study developed a systematic formulation of niosomes to determine the best option for niosome functionalizing for precise delivery to the intracellular pathogen . Silver nanoparticles (AgNPs) were synthesized using gallic acid as an antibacterial agent. Then, niosomes were prepared and characterized, following the encapsulation of AgNPs functionalized with a single-chain antibody screened against the cell wall glycopeptidolipid of . For a precise delivery of the cargo into macrophages, the niosomes were also functionalized with the polysaccharide fucoidan, taken specifically by the scavenger receptor class A expressed on the surface of macrophages. Results of the study showed a steady decrease in the intracellular pathogen load after 48 h post-infection. In conclusion, this system could be developed into a platform to target other types of intracellular pathogens and as an option for antimicrobial therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11818696PMC
http://dx.doi.org/10.3390/ijms26031366DOI Listing

Publication Analysis

Top Keywords

niosomes functionalized
8
intracellular pathogens
8
precise delivery
8
intracellular pathogen
8
intracellular
5
pathogens
5
agnp-containing niosomes
4
functionalized fucoidan
4
fucoidan potentiated
4
potentiated intracellular
4

Similar Publications

Isolation, Purification, and Preparation of Taxinine-Loaded Liposomes for Improved Anti-Hepatocarcinogenic Activity.

Drug Dev Res

September 2025

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.

Liver cancer is the fourth most deadly cancer worldwide, but existing treatment options are insufficient, thus highlighting the urgent need for new therapeutic agents. Taxanes, known for their anticancer properties, provide a promising avenue for intervention. In this study, a tetracyclic taxane compound with antitumor activity (taxinine) was extracted and isolated from Taxus chinensis (T.

View Article and Find Full Text PDF

The NRF2/KEAP1 signaling pathway regulates the gene expression of numerous cytoprotective and detoxifying enzymes and is therefore essential for maintaining cellular redox homeostasis. Despite the increasing knowledge of NRF2 signaling complexity, dimethyl fumarate remains the sole NRF2-targeting therapy in clinical practice, used for multiple sclerosis. Ongoing research exploring the role of NRF2 in cancer, neurodegeneration, diabetes, and cardiovascular, renal, and liver diseases holds significant promise for future therapeutic innovation.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a major global health issue, ranking as the sixth most common cancer and a leading cause of cancer-related deaths worldwide. Risk factors for HCC include chronic hepatitis B and C, obesity, alcohol abuse, diabetes, and metabolic disorders. Current treatments, such as surgery, transplantation, and chemotherapy, are often ineffective in advanced stages due to tumor resistance and the inability to target key oncogenic pathways.

View Article and Find Full Text PDF

Circadian rhythms are essential for maintaining health and homeostasis, and disruptions can lead to sleep disorders, metabolic diseases, cardiovascular diseases, and neurodegenerative conditions. Herein, we discuss the importance of circadian rhythms and the challenges in their regulation, highlighting the limitations of traditional drug delivery methods. Various nanomaterials such as liposomes, polymeric nanoparticles (PNPs), and mesoporous silica nanoparticles have unique physical and chemical properties.

View Article and Find Full Text PDF

Modulating macrophage function is an effective strategy for treating atherosclerosis. Our previous research shows that tilianin (Til) effectively regulates macrophage polarization. This immune modulation positions Til as a promising plant-derived therapeutic agent with potential for atherosclerosis treatment and management.

View Article and Find Full Text PDF