Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Evidence suggests that the progression of acute kidney injury (AKI) is driven by tubular epithelial cell (TEC) injury. However, the role of ferroptosis during the regulatory process remains unclear. Fifty-three patients with AKI were included to examine the expressions of Rab7, glutathione peroxidase 4 (GPX4), and Hif-1α by immunohistochemistry. The relationship between these expressions and serum creatinine (Scr) and blood urea nitrogen (BUN) levels was analyzed. After inducing AKI and ferroptosis through bilateral renal artery ischemia-reperfusion injury (I/R) in vivo and hypoxia in vitro, we examined the expression of Rab7. The injury and ferroptosis were observed following the administration of erastin or ferrostatin-1 (Fer-1), as well as the downregulation of Rab7. In addition, we investigated the degradation of GPX4 and chaperone-mediated autophagy (CMA). Finally, we assessed the injury and ferroptosis after the combination of RAS-selective lethal 3 (RSL3) and downregulation of Rab7. GPX4 exhibited an inverse correlation with Hif-1α, Scr, BUN, and Rab7. Conversely, Rab7 was positively correlated with Scr and BUN. Both in vivo and in vitro models resulted in elevated levels of ferroptosis and Rab7. Erastin exacerbated ferroptosis and injury, but this effect was mitigated by Fer-1. Downregulation of Rab7 reversed the increased ferroptosis and injury. Hypoxia enhanced lysosomal transport and degradation of GPX4 through activation of CMA. Furthermore, the reversal of these effects was observed upon the downregulation of Rab7. However, the results obtained from Rab7 downregulation were subsequently reversed by RSL3. Ferroptosis is important in TEC injury during AKI and Rab7 promotes tubular ferroptosis by facilitating CMA-mediated degradation of GPX4. To explore the mechanism underlying ferroptosis in I/R-induced renal injury and to confirm the effect of Rab7, we first evaluated ferroptosis in renal biopsy samples, and then examined Rab7 expression and renal tubular injury during AKI in vivo and in vitro. Finally, we performed in vitro experiments to investigate the specific role of Rab7 in the regulation of ferroptosis and showed that the regulatory mechanism was related to CMA-mediated GPX4 degradation in renal TECs.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00636.2023DOI Listing

Publication Analysis

Top Keywords

degradation gpx4
16
downregulation rab7
16
rab7
14
injury aki
12
ferroptosis
12
injury
11
tubular epithelial
8
gpx4 chaperone-mediated
8
chaperone-mediated autophagy
8
tec injury
8

Similar Publications

[Inhibition of ferroptosis alleviates acute kidney injury caused by diquat in zebrafish].

Nan Fang Yi Ke Da Xue Xue Bao

August 2025

Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China.

Objectives: To investigate the role of ferroptosis in diquat-induced acute kidney injury (AKI) and its molecular mechanisms.

Methods: Transgenic zebrafish models with Tg (Eco.Tshb:EGFP) labeling of the renal tubules and Tg (lyz:dsRed2) labeling of the neutrophils were both divided into control group, gentamicin (positive control) group, diquat poisoning group, ferroptosis inhibitor group.

View Article and Find Full Text PDF

Ferroptosis, a controlled cell death influenced by iron-dependent lipid peroxidation, presents potential therapeutic targets for cancer treatment due to its unique molecular pathways and potential drug resistance. Natural compounds, such as polyphenols, flavonoids, terpenoids and alkaloids, can influence ferroptosis via important signalling pathways, such as Nrf2/Keap1, p53, and GPX4. These are promising for combinational therapy due to their ability to cause ferroptotic death in cancer cells, exhibit tumour-specific selectivity and reduce systemic toxicity.

View Article and Find Full Text PDF

Small extracellular vesicles orchestrated pathological communications between breast cancer cells and cardiomyocytes as a novel mechanism exacerbating anthracycline cardiotoxicity by fueling ferroptosis.

Redox Biol

September 2025

National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, 100853, Beijing, China; Institute of Geriatric Medicine, The Second Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.

Small extracellular vesicles (sEVs) critically orchestrate inter-tissue and inter-organ communications and may play essential roles in heart-tumor interaction. However, whether cancer-secreted sEVs affect the progression of doxorubicin-induced cardiotoxicity (DOXIC) via orchestrating the tumor cell-cardiomyocyte crosstalk has not yet been explored. Herein, we reveal that Doxorubicin (DOX)-treated breast cancer cells secrete sEVs (D-BCC-sEVs) that exacerbate DOX-induced ferroptosis of human iPSC-derived cardiomyocytes (hiCMs).

View Article and Find Full Text PDF

There are no proven therapies for metastatic or unresectable Chromophobe Renal Cell Carcinoma (ChRCC). ChRCC is characterized by high glutathione levels and hypersensitivity to ferroptosis, an iron-dependent form of cell death characterized by peroxidation of polyunsaturated fatty acids. The underlying mechanisms leading to ferroptosis hypersensitivity are unknown.

View Article and Find Full Text PDF

Background: Benzene, a ubiquitous industrial chemical, is a well-established environmental toxin associated with hematological disorders such as myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), which are characterized by impaired hematopoiesis and bone marrow failure. This study investigates the role of ferroptosis, an iron-dependent form of cell death, in benzene-induced hematotoxicity, focusing on the repression of glutathione peroxidase 4 (GPX4), a critical regulator of ferroptosis.

Materials And Methods: Male C57BL/6 mice were exposed to benzene at various doses over six weeks.

View Article and Find Full Text PDF