98%
921
2 minutes
20
Carbon-supported metal single-atom catalysts (M-SACs) are promising oxygen reduction reaction (ORR) catalysts. Their ORR activity and selectivity are significantly affected by the heteroatoms that coordinate the central metal atoms. Previous reports found that oxygen-coordinated M-SACs promoted a 2e ORR rather than the 4e ORR that is more desirable for fuel cells. Herein, we report for the first time that oxygen-coordinated M-SACs are capable of promoting the 4e ORR in acid media. We prepared a Cr(acac)-NC catalyst with the central Cr atom coordinated by two O atoms. The Cr(acac)-NC catalyst not only exhibits excellent ORR activity and stability in acid media, but also delivers high proton exchange membrane fuel cell (PEMFC) performance comparable to N-coordinated M-SACs. Density functional theory (DFT) calculations reveal that Cr-O2 moieties located on the zigzag edge of the carbon support are the ORR-active sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202500500 | DOI Listing |
Dalton Trans
September 2025
University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.
Developing efficient, low-cost catalysts for oxygen reduction and evolution reactions (ORR and OER) is key to advancing metal-air batteries and regenerative fuel cells. In this study, nitrogen-doped binary metal (Mn and Ni) oxides (N-BMOs) and Pt-decorated N-BMOs were synthesised using three methods and tested as ORR and OER catalysts in alkaline media. Their physicochemical properties were characterised by XRD, N-sorption, TEM, and XPS, while their electrochemical performance was evaluated using voltammetry and impedance spectroscopy.
View Article and Find Full Text PDFBMB Rep
September 2025
Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499; Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon 16499; BK21 R&E Initiative for Advanced Precision Medicine, Ajou University School of Medicine, Suwon 16499, Korea.
Altered nuclear morphology, one of the characteristics of cancer cells, is often indicative of tumor prognosis. While reactive oxygen species (ROS) are known to induce nuclear morphology changes, mechanisms underlying these effects remain elusive, particularly regarding nuclear assembly. We hypothesized that mitotic cells might exhibit increased susceptibility to ROSinduced nuclear deformation due to the dynamic nature of nuclear envelope during mitosis, i.
View Article and Find Full Text PDFToxicol Mech Methods
September 2025
Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
Mechanistic studies have been suggested that toxic effects of bleomycin are generally attributed to formation of free radicals, mitochondria damages, oxidative stress and inflammation. For this purpose, we explored the direct exposure of bleomycin and protective effects of the betanin and vanillic acid separately against its possible toxicity in rat lung isolated mitochondria. Various mitochondrial toxicity parameters were evaluated including; succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS) formation, mitochondrial swelling, mitochondrial membrane potential (MMP) collapse, malondialdehyde (MDA) and glutathione disulfide (GSSG) levels.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
September 2025
Neuroscience Research Center, Suleyman Demirel University, Isparta, Türkiye.
Background: Microglia are brain resident cells that control neural network maintenance, damage healing, and brain development. Microglia undergo apoptosis, cytokine production, and reactive free radicals of oxygen (ROS) in response to lipopolysaccharide (LPS) stimulation. TRPM2 is activated by LPS-induced oxidative stress, but it is inhibited by carvacrol (CARV) and N-(p-amylcinnamoyl)anthranilic acid (ACA).
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Smart Polymeric Biomaterials Research Group, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium.
The lower gastrointestinal (GI) tract is affected by a range of diseases, including colorectal cancer and inflammatory bowel disease, among others. Effective treatment of these conditions requires drug delivery systems (DDSs) capable of precise targeting. While pH- and enzyme-sensitive DDSs are the most used, they often suffer from premature drug release and target specificity, limiting their efficacy.
View Article and Find Full Text PDF