Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Effective nitrogen (N) fertilizer management can improve photosynthetic performance of maize and enhance the grain yield. However, the effects of the deep placement of N on post-silking photosynthetic performance in maize and its relationship with grain filling are limited. The study was a split-plot design with N application rates as the main plots and N placement depths as sub-plots. The N application rates consisted of 225, 191.25, and 157.5 kg ha and N placement depths consisted of 5 and 15 cm, respectively. The growth parameters, photosynthetic capacity, subcellular ultrastructure, antioxidant system in maize leaves, and grain filling characteristics were measured.

Results: Increasing the N placement depth counteracted the adverse effects of reduced N availability on the leaf area index, leaf area duration, and photosynthetic performance of plants. Compared to 225 kg N ha applied underground at 5 cm, a 15% reduction in the N application rate at 15 cm reduced oxidative stress through the activation of antioxidative enzymes, which enabled plants to maintain their chloroplast ultrastructure, achieving 20.7% higher chlorophyll content, 7.8% higher photosynthetic rate per unit of leaf area, and 5.6% higher leaf area index during the later growth period. It also facilitated enhancing the growth rate during maximum filling and extending the active filling duration of grains.

Conclusions: Overall, reducing the recommended N application rate of 225 kg ha by 15% but applying it at a depth of 15 cm might delay plant senescence and extend grain filling active time, improved photosynthetic performance in late growth period, and finally increased grain weight and grain yield of maize.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808948PMC
http://dx.doi.org/10.1186/s12870-025-06145-1DOI Listing

Publication Analysis

Top Keywords

photosynthetic performance
20
leaf area
16
grain filling
12
nitrogen fertilizer
8
performance maize
8
grain yield
8
application rates
8
placement depths
8
application rate
8
growth period
8

Similar Publications

3D-Printed Microfiltration Membranes via Dual-Wavelength Microstereolithography.

ACS Omega

September 2025

Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft 2629HS, The Netherlands.

A new and sustainable membrane manufacturing method is 3D printing, which reduces the number of fabrication steps, waste production, and the corresponding CO emissions. It further enables fabricating membranes with well-defined pore size, shape, and configuration. Here, we study 3D printing of microfiltration membranes using a novel dual-wavelength microstereolithography method.

View Article and Find Full Text PDF

Untangling metabolic interactions of a nongrowing, hydrogen producing synthetic coculture through a multispecies metabolic flux analysis.

Bioresour Technol

September 2025

Bioengineering Department, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City 07340, Mexico. Electronic address:

In this study a methodology to elucidate metabolic interactions that enhance hydrogen (H) production in cocultures under nongrowing conditions is presented. Core metabolic models of Rhodopseudomonas palustris and Clostridium butyricum were integrated to perform a multispecies metabolic flux analysis (mMFA), constrained by experimentally measured yields. Flux distributions were clustered, and thermodynamically favorable solutions were identified.

View Article and Find Full Text PDF

The interaction between nitrogen source and light intensity affects the biomass and phenotypic plasticity of Scenedesmus obliquus.

Biotechnol Lett

September 2025

Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.

As critical environmental factors, nitrogen and light not only regulate phytoplankton growth but also influence their phenotypic plasticity. Scenedesmus obliquus, an alga which is famous for its remarkable phenotypic plasticity, was studied to understand its response to varying combinations of nitrogen source and light intensity. It was cultured in media containing different nitrogen sources (NaNO, NHCl, CO(NH)) under a range of light intensities (25, 50, 75, 100, 150 µmol photons m s).

View Article and Find Full Text PDF

Pigment dynamics in temperate evergreen forests remain poorly characterized, despite their year-round photosynthetic activity and importance for carbon cycling. Developing rapid, nondestructive methods to estimate pigment composition enables high-throughput assessment of plant acclimation states. In this study, we investigate the seasonality of eight chlorophyll and carotenoid pigments and hyperspectral reflectance data collected at both the needle (400-2400 nm) and canopy (420-850 nm) scales in Pinus palustris (longleaf pine) at the Ordway Swisher Biological Station in north-central Florida, USA.

View Article and Find Full Text PDF

Grafting enhances drought stress tolerance by regulating the proteome and targeted gene regulatory networks in tomato.

Front Plant Sci

August 2025

Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

Tomato (), a widely cultivated yet perishable crop, depends heavily on adequate sunlight and water for optimal growth and productivity. However, due to unavoidable environmental and climatic changes-particularly drought-its productivity has declined in recent years. Grafting, an ancient horticultural practice, is known to enhance yield and combat abiotic stress by regulating physiological and cellular processes.

View Article and Find Full Text PDF