Untangling metabolic interactions of a nongrowing, hydrogen producing synthetic coculture through a multispecies metabolic flux analysis.

Bioresour Technol

Bioengineering Department, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City 07340, Mexico. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study a methodology to elucidate metabolic interactions that enhance hydrogen (H) production in cocultures under nongrowing conditions is presented. Core metabolic models of Rhodopseudomonas palustris and Clostridium butyricum were integrated to perform a multispecies metabolic flux analysis (mMFA), constrained by experimentally measured yields. Flux distributions were clustered, and thermodynamically favorable solutions were identified. The mMFA revealed that, in coculture, R. palustris captures more light energy, producing hydrogen and less reduced compounds from highly reduced, low-energy metabolites supplied by C. butyricum. Increased photosynthetic activity raises the redox state of R. palustris, driving H and lactate production to dissipate excess reducing power. While C. butyricum cannot survive alone under the test conditions, it persists in coculture by consuming acetate and lactate, generating energy via substrate-level phosphorylation and electron bifurcation. Coculture yields higher hydrogen production, primarily from R. palustris. These findings suggest the formation of an energy-coupled association that enables energy conservation, potentially supporting long-term bacterial survival.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2025.133275DOI Listing

Publication Analysis

Top Keywords

metabolic interactions
8
multispecies metabolic
8
metabolic flux
8
flux analysis
8
hydrogen production
8
untangling metabolic
4
interactions nongrowing
4
hydrogen
4
nongrowing hydrogen
4
hydrogen producing
4

Similar Publications

Background: Dietary fiber supports metabolic health via microbial fermentation, producing short-chain fatty acids (SCFAs). However, metabolic responses to fiber vary between individuals, potentially due to differences in gut microbiota composition. The Prevotella-to-Bacteroides (P/B) ratio has emerged as a potential biomarker for fiber responsiveness.

View Article and Find Full Text PDF

Processed Meat Health Risks: Pathways and Dietary Solutions.

J Nutr

September 2025

School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia; Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250

Background: Red and processed meat consumption is extensively linked to chronic disease risk in observational studies, with robust meta-analyses demonstrating significant positive associations for colorectal, breast, endometrial, and lung cancers, type 2 diabetes (T2DM), cardiovascular disease (CVD), and all-cause mortality. Dose-response relationships indicate elevated risks even at moderate intakes. Moreover, processed meats consistently show stronger detrimental effects than unprocessed red meats.

View Article and Find Full Text PDF

Light-Dependent Regulation of Cyanophage MaMV-DH01 Infection in Microcystis aeruginosa FACHB-524.

Fish Shellfish Immunol

September 2025

Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China. Electronic address:

Cyanophages are widely distributed viruses that specifically infect blue-green algae and play a critical role as biological control agents in aquatic ecosystems. Despite their ecological importance, the effects of light on cyanophage-host interactions are not fully understood. This study aimed to investigate the role of host photosynthesis in different stages of MaMV-DH01 infection, a novel muscle-tailed cyanophage isolated from Donghu Lake that targets Microcystis aeruginosa FACHB524.

View Article and Find Full Text PDF

The effects of cadmium and high fructose diet on metabolic and reproductive health in female CD-1 mice.

Food Chem Toxicol

September 2025

Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC. Electronic address:

Background: Evaluation of the combined effects of endocrine-disrupting chemicals and dietary factors provides critical information for cumulative health risk assessment. Herein, we investigated the effects of cadmium (Cd) exposure and high fructose (HFr) diet on metabolic and reproductive health in female mice.

Methods: Female CD-1 mice were exposed to cadmium chloride (CdCl) (0.

View Article and Find Full Text PDF

Untangling metabolic interactions of a nongrowing, hydrogen producing synthetic coculture through a multispecies metabolic flux analysis.

Bioresour Technol

September 2025

Bioengineering Department, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City 07340, Mexico. Electronic address:

In this study a methodology to elucidate metabolic interactions that enhance hydrogen (H) production in cocultures under nongrowing conditions is presented. Core metabolic models of Rhodopseudomonas palustris and Clostridium butyricum were integrated to perform a multispecies metabolic flux analysis (mMFA), constrained by experimentally measured yields. Flux distributions were clustered, and thermodynamically favorable solutions were identified.

View Article and Find Full Text PDF